A Broadband H-plane Printed Horn Antenna with Sandwich Substrate Structure for Millimeter-wave Applications
Keywords:
Millimeter wave antenna, 5G (fifth generation), wireless applicationsAbstract
Antenna is a very important element and plays a key role in communication systems for radiating energy. Based on high data rate speed requirements and large volume multimedia applications, 3G, 4G and now 5G technologies have been introduced and implemented. This paper presents a low profile antenna with novel structure and large continuous bandwidth for 5G broadband and millimeter-wave wireless applications. It is an H-plane printed horn antenna with multi-layered sandwich substrate. There are two Rogers (RO3003(tm)) substrates that make a sandwich structure with eight stainless steel columns. The proposed antenna is expected to give an impedance bandwidth 20-45 GHz with S11 < -10dB and 8.64dBi gain at 28 GHz design frequency. ANSYS 18.2 HFSS simulator is used for designing and optimization of the profile antenna. A comparison between simulated and measured results confirms the validity of the proposed design.
Downloads
References
J. Wang, Y. Li, L. Ge, J. Wang, M. Chen, Z. Zhang, and Z. Li, “Wideband dipole array loaded substrate integrated H-plane horn antenna for millimeter waves,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 10, pp. 5211-5219, Oct. 2017. doi: 10.1109/TAP.2017.2741025.
M. E. Morote, B. Fuchs, J. F. Zurcher, and J. R. Mosig, “A printed transition for matching improvement of SIW horn antennas,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1923-1930, Apr. 2013.
A. R. Mallahzadeh and S. Esfandiarpour, “Wideband H-plane horn antenna based on ridge substrate integrated waveguide (RSIW),” IEEE Antennas Wireless Propagation Letters, vol. 11, pp. 85-88, Mar. 2012.
C.-X. Mao, M. Khalily, P. Xiao, T. W. C. Brown, and S. Gao, “Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5G broadcast applications,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 1, pp. 160-168, Jan. 2019. doi: 10.1109/TAP.2018.2874796.
M. J. Marcus, “5G and ‘IMT for 2020 and beyond’ [spectrum policy and regulatory issues],” IEEE Wireless Communications, vol. 22, no. 4, pp. 2-3, Aug. 2015.
H. Sun, Y.-X. Guo, and Z. Wang, “60-GHz circularly polarized U-slot patch antenna array on LTCC,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 1, pp. 430-435, Jan. 2013.
W. Yang and J. Zhou, “Wideband low-profile substrate integrated waveguide cavity-backed Eshaped patch antenna,” IEEE Antennas Wireless Propagation Letters, vol. 12, pp. 143-146, Jan. 2013.
K.-S. Chin, W. Jiang, W. Che, C.-C. Chang, and H. Jin, “Wideband LTCC 60-GHz antenna array with a dual-resonant slot and patch structure,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 174-182, Jan. 2014.
S. L. Smith, T. Merkle, K. W. Smart, S. G. Hay, M. Shen, and F. Ceccato, “Design aspects of an antenna-MMIC interface using a stacked patch at 71–86 GHz,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1591-1598, Apr. 2013.
N. Ghassemi, K. Wu, S. Claude, X. Zhang, and J. Bornemann, “Low-cost and high-efficient W-band substrate integrated waveguide antenna array made of printed circuit board process,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1648-1653, Mar. 2012. doi: 10.1109/TAP.2011. 2180346.
L. Wang, Y. X. Guo, and W. X. Sheng, “Wideband high-gain 60-GHz LTCC L-probe patch antenna array with a soft surface,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1802-1809, Apr. 2013. doi: 10.1109/TAP.2012. 2220331. -200 -150 -100 -50 0 50 100 150 200 -15 -10 -5 0 5 10 Gain (dB) Angle (degree) Gain 300 ACES JOURNAL, Vol. 36, No. 3, March 2021
J. F. Xu, Z. N. Chen, X. M. Qing, and W. Hong, “Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 3, pp. 826-832, Mar. 2011. doi: 10.1109/TAP.2010.2103018.
Y. Liand and K. M. Luk, “60-GHz substrate integrated waveguide fed cavity backed aperturecoupled microstrip patch antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1075-1085, Mar. 2015. doi: 10.1109/ TAP.2015.2390228.
M. Li and K.-M. Luk, “Low-cost wideband microstrip antenna array for 60-GHz applications,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3012-3018, June 2014. doi: 10.1109/TAP.2014.2311994.
T. Y. Yang, W. Hong, and Y. Zhang, “Wideband millimeter-wave substrate integrated waveguide cavity-backed rectangular patch antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 205-208, 2014. doi: 10.1109/LAWP.2014. 2300194.
T. Zhang, Y. Zhang, S. Yu, W. Hong, and K. Wu, “A Q-band dual-mode cavity-backed wideband patch antenna with independently controllable resonances,” 2013 Proceedings of the International Symposium on Antennas & Propagation, Nanjing, pp. 118-121, 2013.
K. Fan, Z. Hao, and Q. Yuan, “A low-profile wideband substrate-integrated waveguide cavitybacked E-shaped patch antenna for the QLINKPAN applications,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 11, pp. 5667-5676, Nov. 2017. doi: 10.1109/TAP.2017. 2748181.
L. Wang, X. X. Yin, S. L. Li, H. X. Zhao, L. L. Liu, and M. Zhang, “Phase corrected substrate integrated waveguide H-plane horn antenna with embedded metal-via arrays,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 4, pp. 1854-1861, Apr. 2014.
L. Wang, M. E. Morote, H. Y. Qi, X. X. Yin, and J. R. Mosig, “Phase corrected H-plane horn antenna in gap SIW technology,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 1, pp. 347- 353, Jan. 2017. doi: 10.1109/TAP.2016.2623656.
N. Bayat-Makou and A. A. Kishk, “Substrate integrated horn antenna with uniform aperture distribution,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 514-520, Feb. 2017. doi: 10.1109/TAP.2016.2640144.
K. M. Luk and H. Wong, “A new wideband unidirectional antenna element,” Itn. J. Microw. Opt. Technol., vol. 1, no. 1, pp. 35-44, June 2006.
A. Chlavin, “A new antenna feed having equal E - and H-plane patterns,” Transactions of the IRE Professional Group on Antennas and Propagation, vol. 2, no. 3, pp. 113-119, July 1954. doi: 10.1109/ T-AP.1954.27983.
Y. Li and K. Luk, “A multibeam end-fire magnetoelectric dipole antenna array for millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2894-2904, July 2016. doi: 10.1109/TAP.2016.2554601.
J. S. Dahele and K. F. Lee, “Theory and experiment on microstrip antennas with airgaps,” IEEE Proceedings H-Microwaves, Antennas and Propagation, vol. 132, no. 7, pp. 455-460, Dec. 1985. doi: 10.1049/ ip-h-2.1985.0081.
M. Jusoh, T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, “Reconfigurable four-parasiticelements patch antenna for high-gain beam switching application,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 79-82, 2014.
M. S. Alam and A. M. Abbosh, “Beam-steerable planar antenna using circular disc and four PIN-controlled tapered stubs for WiMAX and WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 980-983, 2016.
S. Shi and W. Ding, “Radiation pattern reconfigurable microstrip antenna for WiMAX application,” in Electronics Letters, vol. 51, no. 9, pp. 662-664, Apr. 30, 2015. doi: 10.1049/el.2015.0568.
M. Burtowy, M. Rzymowski, and L. Kulas, “Low-profile ESPAR antenna for RSS-based DoA estimation in IoT applications,” IEEE Access, vol. 7, pp. 17403-17411, 2019.
J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, “Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeterwave applications,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 85-88, 2008. doi: 10.1109/LAWP.2008.919353.
C. A. Balanis, Antenna Theory - Analysis and Design. New Jersey: John Wiley & Sons, pp. 780- 783, 2005.