A Compact Tri-band Miniaturized Antenna with Parasitic Elements Loading

Authors

  • Yan Deng Institute of Applied Physics University of Electronic Science and Technology of China, 610054 Chengdu, China
  • Xue-Fei Li Institute of Applied Physics University of Electronic Science and Technology of China, 610054 Chengdu, China
  • Jing-Song Hong Institute of Applied Physics University of Electronic Science and Technology of China, 610054 Chengdu, China

Keywords:

Bandwidth enhancement, electrically small antenna (ESAs), miniaturized size, tri-band

Abstract

A compact tri-band miniaturized antenna with parasitic element loading is proposed for small form factor devices. Firstly, the dual-band antenna is proposed. Based on the theory of characteristic mode (TCM), the resonant of the metal loop decreases by adding three identical square monopole on the other side of the substrate. By exciting one of three square monopoles, the other two monopole treating as parasitic units, can lower the Q factor of the monopole and enhance the bandwidth of the antenna. Then, the tri-band antenna is proposed. By adding metal patches on the side of the parasitic elements, the higher order of the metal loop is excited and the new resonant point is created. With the adoption of the TCM, two degenerate modes are separated by adding metal strips on the metal loop to enhance the bandwidth of the low band. Also, the same way is carried out to decrease the electric size of the antenna and the size of the proposed structure meets the requirement of the electric small antenna. To verify the performance, the proposed antenna is fabricated and tested. The measured results are in agreement with simulated results.

Downloads

Download data is not yet available.

References

A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004.

L. Zaid, G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiemik, “Dual-frequency and broad-band antennas with stacked quarter wavelength elements,” IEEE Trans. Antennas Propag., vol. 47, no. 4, pp. 654-660, Apr. 1999.

C. Y. Chiu, K. M. Shum, C. H. Chan, and K. M. Luk, “Bandwidth enhancement technique for quarter-wave patch antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 2, pp. 130-132, 2003.

S. H. Yeung, K. F. Man, K. M. Luk, and C. H. Chan, “A trapeizform U-slot folded patch feed antenna design optimized with jumping genes evolutionary algorithm,” IEEE Trans. Antennas Propag., vol. 56, no. 2, pp. 571-577, 2008.

H. D. Chen, “Compact circularly polarised microstrip antenna with slotted ground plane,” Electron. Lett., vol. 38, no. 13, pp. 616-617, 2002.

J. S. Kuo and G. B. Hsieh, “Gain enhancement of a circularly polarized equilateral-triangular microstrip antenna with a slotted ground plane,” IEEE Trans. Antennas Propag., vol. 51, no. 7, pp. 1652-1656, July 2003.

D. Wang, H. Wong, and C. H. Chan, “Small circularly polarized patch antenna,” in 2011 International Workshop on Antenna Technology (iWAT), Hong Kong, China, pp. 271-273, 2011.

H. Wong, K. K. So, K. B. Ng, K. M. Luk, C. H. Chan, and Q. Xue, “Virtually shorted patch antenna for circular polarization,” IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 1213-1216, 2010.

A. Boukarkar, X. Q. Lin, Y. Jiang, and Y. Q. Yu, “Miniaturized single-feed multiband patch antennas,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 850-854, Feb. 2017.

H. M. Chen, Y. K. Wang, Y. F. Lin, C. Y. Lin, and S. C. Pan, “Microstrip-fed circularly polarized square-ring patch antenna for GPS applications,” IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 1264-1267, Apr. 2009.

B. Li, J. S. Hong, and B. Z. Wang, “A novel circular disc monopole antenna for dual-band WLAN applications,” Appl. Comput. Electromagn Soc. J., vol. 27, no. 5, pp. 441-448, May 2012.

S. A. Rezaeieh and A. M. Abbosh, “Compact planar loop–dipole composite antenna with director for bandwidth enhancement and back radiation suppression,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3723-3728, Aug. 2016.

D. L. Jin, T. T. Bu, J. S. Hong, J. F. Wang, and H. Xiong, “A tri-band antenna for wireless applications using slot-type SRR,” Appl. Comput. Electromagn Soc. J., vol. 29, no. 1, pp. 47-53, Jan. 2014.

G. M. Zhang, J. S. Hong, B. Z. Wang, and G. B. Song, “A novel frequency reconfigurable monopole antenna using PIN diode for WLAN/WIMAX applications,” Appl. Comput. Electromagn Soc. J., vol. 27, no. 3, pp. 256-260, Mar. 2012.

C. T. Lee, S. W. Su, S. C. Chen, and C. S. Fu, “Low-cost, direct-fed slot antenna built in metal cover of notebook computer for 2.4-/5.2-/5.8-GHz WLAN operation,” IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2677-2682, May 2017.

M. P. Jayakrishnan, K. Vasudevan, M. Ameen, P. Mohanan, and S. Mathew, “Compact dual polarised V slit, stub and slot embedded circular patch antenna for UMTS/WiMAX/WLAN applications,” Electron. Lett., vol. 52, no. 17, pp. 1425-1426, Aug. 2016.

S. Mathew, R. Anitha, U. Deepak, C. K. Aanandan, P. Mohanan, and K. Vasudevan, “A compact triband dual-polarized corner-truncated sectoral patch antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 5842-5845, Dec. 2015.

M. C. Tang and R. W. Ziolkowski, “A study of low-profile, broadside radiation, efficient, electrically small antennas based on complementary split ring resonators,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4419-4430, Sep. 2013.

S. Verma and P. Kumar, “Printed Newton’s egg curved monopole antenna for ultrawideband applications,” IET Microw. Antennas Propag., vol. 8, no. 4, pp. 278-286, Mar. 2014.

A. A. Salih and M. S. Sharawi, “A dual-band highly miniaturized patch antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1783-1786, 2016.

R. F. Harrington, “Matrix methods for field problems,” Proc. IEEE, vol. 55, no. 2, pp. 136-149, 1967.

R. Harrington and J. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 622- 628, Sep. 1971.

R. Harrington and J. Mautz, “Computation of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 629- 639, Sep. 1971.

R. Harrington, J. Mautz, and Y. Chang, “Characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antennas Propag., vol. 20, no. 2, pp. 194-198, Mar. 1972.

C. Wood, “Improved bandwidth of microstrip antennas using parasitic elements,” IEE Proc. H Microw. Opt. Antennas UK, vol. 127, no. 4, pp. 231-234, 1980.

C. Deng, Z. Feng, and S. V. Hum, “MIMO mobile handset antenna merging characteristic modes for increased bandwidth,” IEEE Trans. Antennas Propagat., vol. 64, no. 7, pp. 2660-2667, July 2016.

[Online]. Available: https://www.mvg-world.com/

C. A. Balanis, Antenna Theory–Analysis and Design. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2005.

L. Liu, S. W. Cheung, Y. F. Weng, and T. I. Yuk, “Cable effects on measuring small planar UWB monopole antennas,” in Ultra Wideband - Current Status and Future Trends, M. Matin, Ed. InTech, pp. 274-294, 2012.

L. Liu, Y. F. Weng, S. W. Cheung, T. I. Yuk, and L. J. Foged, “Modeling of cable for measurements of small monopole antennas,” in 2011 Loughborough Antennas & Propagation Conference, Loughborough, United Kingdom, pp. 1-4, 2011.

P. S. Bakariya, S. Dwari, M. Sarkar, and M. K. Mandal, “Proximity-coupled microstrip antenna for bluetooth, WiMAX, and WLAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 755-758, 2015.

M. P. Jayakrishnan, K. Vasudevan, M. Ameen, P. Mohanan, and S. Mathew, “Compact dual polarised V slit, stub and slot embedded circular patch antenna for UMTS/WiMAX/WLAN applications,” Electron. Lett., vol. 52, no. 17, pp. 1425-1426, Aug. 2016.

Downloads

Published

2020-07-01

How to Cite

[1]
Yan Deng, Xue-Fei Li, and Jing-Song Hong, “A Compact Tri-band Miniaturized Antenna with Parasitic Elements Loading”, ACES Journal, vol. 35, no. 7, pp. 829–836, Jul. 2020.

Issue

Section

General Submission