A Novel Multi-Functional Electronically Tuned Polarization Converter Based on Reconfigurable Reflective Metasurface

Authors

  • Jiaqi Han Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding Xidian University, Xi’an 710071, China
  • Guangyao Liu Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding Xidian University, Xi’an 710071, China
  • Yajie Mu Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding Xidian University, Xi’an 710071, China
  • Haixia Liu Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding Xidian University, Xi’an 710071, China
  • Long Li Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding Xidian University, Xi’an 710071, China

Keywords:

Axial ratio, multi-functional polarizer, reconfigurable metasurface, varactor

Abstract

In this paper, a novel multi-functional electronically tuned polarization converter based on reconfigurable reflective metasurface is proposed. The proposed polarizer can convert linearly polarized waves to left-hand circular polarization, right-hand circular polarization and crossed linear polarization waves without changing the polarization of incident waves. By controlling the varactors that mounted on the metasurface element, the reflection phase difference of the two orthogonal components of the incident linear polarization waves covers from -110° to 210° when the polarizer operates from 4.65 GHz to 5.35 GHz. Moreover, a 14 × 14 prototype is fabricated and measured to validate the proposed polarizer. Measured axial ratios agree well with the simulation results.

Downloads

Download data is not yet available.

References

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Tans. Antennas Propagat., vol. 13, no.1, pp. 3-7, 1965.

M. F. Bolster, “A new type of circular polarizer using crossed dipoles,” IRE Trans. Microwave Theory Techniques, vol. 9, no. 5, pp. 385-388, 1961.

M. H. Chen and G. N. “A wide-band squarewaveguide array polarizer,” IEEE Tans. Antennas Propagat., vol. 21, no. 3, pp. 389-391, 1973.

J. A. Ruiz-Cruz, M. M. Fahmi, M. Daneshmand, and R. R. Mansour, “Compact reconfigurable waveguide circular polarizer,” IEEE MTT-S International Microwave Symposium, 2011.

C. Dietlein, A. Luukanen, Z. Popovic, and E. Grossman, “A w-band polarization converter and isolator,” IEEE Trans. Antennas Propagat., vol. 55, no. 6, pp. 1804-1809, 2007.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antennas Propagat., vol. 21, no. 3, pp. 376-378, 1973.

Q. Zheng, C. Guo, and J. Ding, “Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion,” IEEE Antennas Wireless Propagat. Lett., vol. 17, no. 8, pp. 1459-1463, 2018.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77-79, 2001.

D. Schurig, et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977-980, 2006.

Y. Li, W. Li, and Q. Ye, “A reconfigurable triplenotch-nand antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications,” International Journal of Antennas and Propagation, vol. 2013, Article ID 472645, 2013.

K. Yu, Y. Li, and X. Liu, “Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures,” Applied Computational Electromagnetics Society Journal, vol. 33, no. 7, pp. 758-763, 2018.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-cirular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett., 105, 021110, 2014.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett., 102, 011129, 2013.

H. F. Ma, W. X. Tang, Q. Cheng, and T. H. Cui, “A single metamaterial plate as bandpass filter, transparent wall, and polarization converter controlled by polarizations,” Appl. Phys. Lett., 113, 101104, 2018.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett., 105, 021110, 2014.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization converter for terahertz waves,” Appl. Phys. Lett., 105, 181111, 2014.

J. Chen and A. Zhang, “A linear-to-circular polarizer using split ring resonators,” Applied Computational Electromagnetics Society Journal, vol. 28, no. 6, pp. 507-512, 2013.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. Lett., 117, 044501, 2015.

L. Li, Y. Li, Z. Wu, F. Huo, Y. Zhang, and C. Zhao, “Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces,” Proceedings of the IEEE, vol. 103, no. 7, pp. 1057- 1070, 2015.

B. Li and Q. Xue, “Polarization-reconfigurable omnidirectional antenna combining dipole and loop radiators,” IEEE Antennas Wireless Propagat. Lett., vol. 12, pp. 1102-1105, 2013.

W. Li, S. Gao, Y. Cai, Q. Luo, M. Sobhy, G. Wei, J. Xu, J. Li, C. Wu, and Z. Cheng, “Polarizationreconfigurable circularly polarized planar antenna using switchable polarizer,” IEEE Trans. Antenna Propagat., vol. 65, no. 9. pp. 4470-4477, 2017.

W. Li, S. Xia, B. He, J. Chen, H. Shi, A. Zhang, Z. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenna Propagat., vol. 64, no. 12, pp. 5281-5290, 2016.

X. Gao, W. L. Yang, H. F. Ma, Q. Cheng, X. H. Yu, and T. J. Cui, “A reconfigurable broadband polarization converter based on an active metasurface,” IEEE Trans. Antenna Propagat., vol. 66, no. 11, pp. 6086-6095, 2018.

E. Doumanis, G. Goussetis, R. Dickie, R. Cahill, P. Baine, M. Bain, V. Fusco, J. A. Encinar, and G. Toso, “Electronically reconfigurable liquid crystal based mm-wave polarization converter,” IEEE Trans. Antenna Propagat., vol. 52, no. 4, pp. 2302- 2307, 2014.

Downloads

Published

2019-07-01

How to Cite

[1]
Jiaqi Han, Guangyao Liu, Yajie Mu, Haixia Liu, and Long Li, “A Novel Multi-Functional Electronically Tuned Polarization Converter Based on Reconfigurable Reflective Metasurface”, ACES Journal, vol. 34, no. 07, pp. 1064–1069, Jul. 2019.

Issue

Section

Articles