Detection of the Faulty Sensors on Basis of the Pattern Using Symmetrical Structure of Linear Array Antenna
Keywords:
Array antenna, fault detection, null depth level, nullsAbstract
In this paper, a simple method is proposed to diagnose the position of the damaged sensors. The position of the damaged sensors is diagnosed on the basis of the null depth level and the number of nulls for the degraded radiation pattern. The method is initiated with tabulation of the array radiation pattern with a single damaged sensor. The corresponding pattern is set as the reference to the radiation pattern of the failed sensors. The tabulated damaged array sensors are compared to a configuration of the assumed damaged sensor. The radiation pattern with deeper null depth level will be the location of the damaged sensor. Moreover, the symmetrical sensor damaged (SSD) technique diagnose the position of damaged sensor, in which on the basis of nulls one can detect the location of damaged sensors. The proposed method diagnoses the location of damaged sensors on the basis of pattern without complex computation as compared to available methods.
Downloads
References
S. Caorsi, M. Donelli, F. De Natale, D. Franceschini, and A. Massa, “A versatile enhanced genetic algorithm for planar array design,” Journal of Electromagnetic Waves and Applications, vol. 18, no. 11, pp. 116-119, 2004.
S. M. Makouie and A. Ghorbani, “Comparison between genetic and particle swarm optimization algorithms in optimizing ships' degaussing coil currents,” Applied Computational Electromagnetics Society Journal, vol. 31, no. 5, 2016.
S. Roy, et al., “Comparison of evolutionary algorithms for optimal design of broadband multilayer microwave absorber for normal and oblique incidence,” Applied Computational Electromagnetics Society Journal, vol. 31, no. 1, 2016.
R. Azaro, M. Donelli, G. Boato, E. Zeni, and A. Massa, “Design of prefractal mono polar antenna for 3.4-3.6 GHz Wi-Max band portable devices,” Electronic Letters, vol. 5, no. 4, pp. 116-119, 2006.
M. L. M. Lakshmi, et al., “Amplitude only linear array synthesis with desired nulls using evolutionary computing technique,” Applied Computational Electromagnetics Society Journal, vol. 31, no. 11, 2016.
S. U. Khan, I. M. Qureshi, F. Zaman, A. Naveed, B. Shoaib, and A. Basit, “Correction of faulty sensors in phased array radars using symmetrical sensor failure technique and cultural algorithm with differential evolution,” The Scientific World Journal (TSWJ), vol. 2014, Article ID 852539, 10 pages, 2014. doi:10.1155/2014/852539.
S. U. Khan, I. M. Qureshi, and B. Shoaib, “Metaheuristic cuckoo search algorithm for the correction of failed array antenna,” Mehran University Research Journal, vol. 34, no. 4, Oct. 2015.
S. U. Khan, I. M. Qureshi, B. Shoaib, and A. Naveed, “Correction of faulty arrays using nature inspired hybrid heuristic computation technique,” Submitted to Sindh University Research Journal.
S. U. Khan, I. M. Qureshi, H. Haider, F. Zaman, and B. Shoaib, “Diagnosis of faulty sensors in phased array radar using compressed sensing and hybrid IRLS-SSF algorithm,” Wireless Personal Communications, vol. 89, no. 2, pp. 1-20, 2016.
L. Poli, et al., “Failure correction in time-modulated linear arrays,” IET Radar, Sonar & Navigation, vol. 8, no. 3, pp. 195-201, 2014.
O. P. Acharya, A. Patnaik, and N. S. Sachendra, “Limits of compensation in a failed array antenna,” International Journal of RF and Microwave Computer-Aided Engineering, vo. 24, no. 6, pp. 635-645, 2014.
O. M. Bucci, M. D. Migliore, G. Panariello, and G. Sgambato, “Accurate diagnosis of conformal arrays from near-field data using the matrix method,” IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 1114-1120, Mar. 2005.
M. D. Migliore, “A compressed sensing approach for array diagnosis from a small set of near-field measurements,” IEEE Trans. Antennas Propag., vol. 59, no. 6, pp. 2127-2133, June 2011.
M. D. Migliore, “Array diagnosis from far-field data using the theory of random partial fourier matrices,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 12, pp. 745-748, July 2013.
B. Fuchs and M. D. Migliore, “Accurate array diagnosis from near-field measurements using reweighted minimization,” IEEE Antennas Propag. Symp., Orlando, FL, USA, pp. 2255-2256, 2013.
B. Fuchs, L. Le Coq, L. Ferro-Famil, and M. D. Migliore, “Comparison of methods for reflect array diagnostic from far field measurements,” in Proc. IEEE Int. Symp. Antennas Propag., pp. 398-399, July 2015.
J. J. Lee, E. M. Ferrer, D. P. Woollen, and K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag., vol. 36, no. 3, pp. 884-889, June 1988.
G. Oliveri, L. Manica, and A. Massa, “ADS-based guidelines for thinned planar arrays,’’ IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1935-1948, June 2010.
A. Patnaik, B. Choudhury, P. Pradhan, R. K. Mishra, and C. Christodoulou, “An ANN application for fault finding in antenna arrays,” IEEE Trans. Antennas Propagat., vol. 55, pp. 775-777, 2007.
O. M. Bucci, A. Capozzoli, and G. D’Elia, “Diagnosis of array faults from far-field amplitudeonly data,” IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 647-652, 2000.
G. Castaldi, V. Pierro, and I. Pinto, “Efficient faulty element diagnostic of large antenna arrays by discrete mean field neural nets,” Progress in Electromagnetics Research, vol. 25, pp. 53-76, 2000.
B. Choudhury, O. P. Acharya, and A. Patnaik, “Bacteria foraging optimization in antenna engineering: An application to array fault finding,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 23, pp. 141- 148, Mar. 2013.
S. U. Khan, I. M. Qureshi, A. Naveed, B. Shoaib, and A. Basit, “Detection of defective sensors in phased array using compressed sensing and hybrid genetic algorithm,” Journal of Sensors, vol. 2016, Article ID 6139802, 8 pages, 2016. doi:10.1155/ 2016/6139802.
S. U. Khan, I. M. Qureshi, F. Zaman, A. Basit, and W. Khan, “Application of firefly algorithm to fault finding in linear arrays antenna,” World Applied Sciences Journal (WASJ), vol. 26, no. 2, pp. 232-238, 2013. doi: 10.5829/idosi.wasj.2013.26.02.1387.
S. U. Khan, I. M. Qureshi,F. Zaman, B. Shoaib, and K. Ashraf, “An application of hybrid nature inspired computational technique to detect faulty element in array antenna,” Proceedings of 2015 12th International Bhurban Conference on Applied Sciences and Technology, IEEE IBCAST 2015, pp. 629-632, 2015.
J. A. Rodríguez, F. Ares, H. Palacios, and J. Vassal’lo, “Finding defective elements in planar arrays using genetic algorithms,” Progr. Electromagn. Res., PIER, vol. 29, pp. 25-37, 2000.
J. Lee, E. M. Ferrer, D. P. Woollen, and K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag., vol. 36, no. 3, pp. 884-889, June 1988.
L. Gattoufi, D. Picard, Y. R. Samii, and J. C. Bolomey, “Matrix method for near-field diagnostic techniques of phased array antennas,” in Proc. IEEE Int. Symp. Phased Array Syst. Technol., pp. 52-57, 1996.
J. A. Rodríguez, F. Ares, H. Palacios, M. F. Delgado, R. Iglesias, and S. Barrow, “Rapid method for finding faulty elements in antenna arrays,” IEEE Trans. Antennas Propagat., vol. 57, pp. 1679-1683, 2009.
A. Buonanno and M. D’Urso, “On the diagnosis of arbitrary geometry fully active arrays,” presented at the Eur. Conf. Antennas Propag. (EuCAP), Barcelona, Apr. 12-16, 2010
M. D. Migliore, B. Fuchs, L. Le Coq, and L. FerroFamil, “Compressed sensing approach for reflect array diagnostic from far field measurements,” in Proc. Eur. Microw. Conf., pp. 289-292, Sep. 2015.
G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays, a Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4627-4636, Oct. 2012.
C. Zhu, et al., “Impaired sensor diagnosis, beamforming, and DOA estimation with difference co-array processing,” IEEE Sensors Journal, vol. 15, no. 7, pp. 3773-3780, 2015.
B. Fuchs, L. Le Coq, and M. D. Migliore, “Fast antenna array diagnosis from a small number of far-field measurements,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2227-2235, 2016.
S. U. Khan, I. M. Qureshi, F. Zaman, and A. Naveed, “Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation,” Progress In Electromagnetics Research B, vol. 52, pp. 165-184, 2013.
S. U. Khan, I. M. Qureshi, B. Shoaib, and A. Basit, “Correction of faulty pattern using cuckoo search algorithm and symmetrical element failure technique along with distance adjustment between the antenna array,” Proceedings of 2015 12th International Bhurban Conference on Applied Sciences and Technology, IEEE IBCAST 2015, pp. 633-636, 2015.
B. Choudhury, O. P. Acharya, and A. Patnaik, “Bacteria foraging optimization in antenna engineering: An application to array fault finding,” International Journal of RF and Microwave Computer‐Aided Engineering, vo. 23, no. 2, pp. 141-148, 2013.
S. U. Khan, I. M. Qureshi,F. Zaman, and W. Khan, “Detection of faulty sensor in array using symmetrical structure and cultural algorithm hybridized with differential evolution,” Frontiers of Information Technology & Electronic Engineering. doi.10. 10.1631/FITEE.1500315.
S. U. Khan, I. M. Qureshi, B. Shoaib, and A. Naveed, “Recovery of failed element signal with a digitally beamforming using linear symmetrical array antenna,” Journal of Information Science and Engineering (JISE), vol. 32, no. 3, pp. 611-624, 2016.
I. Wolf, “Determination of the radiating system which will produce a specified directional characteristic,” Proc. IRE, vol. 25, pp. 630-643, May 1937.
O. Gassab and A. Azrar, “Novel mathematical formulation of the antenna array factor for side lobe level reduction,” Applied Computational Electromagnetics Society Journal, vol. 31, no. 12, 2016.
C. A. Balanis, Antenna Theory: Analysis and Design. Wiley, New Jersey, 2005.