Membrane Conductance Analysis on Single-cell Electroporation with Electrolyte-filled Capillary

作者

  • J. Anselmo Institute of Biomedical Engineering, Department of Electrical Engineering Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
  • L. C. Ramos Institute of Biomedical Engineering, Department of Electrical Engineering Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
  • J. L. B. Marques Institute of Biomedical Engineering, Department of Electrical Engineering Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
  • F. R. M. B. Silva Department of Biochemistry Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
  • D. O. H. Suzuki Institute of Biomedical Engineering, Department of Electrical Engineering Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil

关键词:

Electrolyte-filled capillary, electroporation, electroporation model, membrane conductivity, single cell

摘要

Single-cell electroporation with electrolytefilled capillary is a selective technique that affects the target cell without any consequences for the neighbouring cells. Inhomogeneous electric field caused by interaction of capillary, cell and environment in the experiment make the optimization setup difficult for DNA transfection efficiency. A electroporation model of membrane conductivity with experimental parameters was used to analyze the influence of cell-to-tip distance, cell-capillary dimensions relation, electrolyte and cytoplasm conductivity, and strength of the pulses on electroporation. Simulation results demonstrate that the nonlinear electric field distribution on cell membrane depends on tip-to-cell distance and may be the cause of cell survival. The electroporation with capillary are affected by the external medium, relation between the cell and capillary radius, tip-to-cell distance, and strength of the applied potential.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

T. Kotnik, P. Gorazd, and D. Miklavcic, The Cell in the Electric Field, in Clinical Aspects of Electroporation, J. G. Stephen, T. Kee, and E. W. Lee, Ed. New York, NY: Springer Science+Business Media, pp. 19-29, 2011.

D. O. H. Suzuki, A. Ramos, M. C. M. Ribeiro, L. H. Cazarolli, F. R. M. B. Silva, L. D. Leite, and J. L. B. Marques, “Theoretical and experimental analysis of electroporated membrane conductance in cell suspension,” IEEE Trans. Biomed. Eng., vol. 58, no. 12, pp. 3310-8, Dec. 2011.

D. O. H. Suzuki, J. Anselmo, K. D. de Oliveira, J. O. Freytag, M. M. M. Rangel, J. L. B. Marques, and A. Ramos, “Numerical model of dog mast cell tumor treated by electrochemotherapy,” Artif. Organs, vol. in press, Jul. 2015.

L. M. Mir, L. F. Glass, G. Sersa, J. Teissie, C. Domenge, D. Miklavcic, M. J. Jaroszeski, S. Orlowski, D. S. Reintgen, and Z. Rudolf, “Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy,” Br. J. Cancer, vol. 77, no. 12, p. 2336, 1998.

P. A. Beare, K. M. Sandoz, A. Omsland, D. D. Rockey, and R. A. Heinzen, “Advances in genetic manipulation of obligate intracellular bacterial pathogens,” Front. Microbiol., vol. 2, no. May, p. 97, Jan. 2011.

M. Wang, O. Orwar, J. Olofsson, and S. G. Weber, “Single-cell electroporation,” Anal. Bioanal. Chem., vol. 397, no. 8, pp. 3235-3248, 2010.

K. Baek, C. Tu, J. Zoldan, and L. J. Suggs, “Gene transfection for stem cell therapy,” Curr. Stem Cell Reports, pp. 52-61, 2016.

D. Karra and R. Dahm, “Transfection techniques for neuronal cells,” J. Neurosci., vol. 30, no. 18, pp. 6171-6177, 2010.

T. K. Kim and J. H. Eberwine, “Mammalian cell transfection: The present and the future,” Anal. Bioanal. Chem., vol. 397, no. 8, pp. 3173-3178, 2010.

J. Li, W. Tan, M. Yu, and H. Lin, “The effect of extracellular conductivity on electroporationmediated molecular delivery,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 461-470, 2013.

R. W. Glaser, S. L. Leikin, L. V Chernomordik, V. F. Pastushenko, and A. I. Sokirko, “Reversible electrical breakdown of lipid bilayers: formation and evolution of pores,” Biochim. Biophys. Acta (BBA)-Biomembranes, vol. 940, no. 2, pp. 275- 287, 1988.

A. Ramos, A. L. S. Schneider, D. O. H. Suzuki, and J. L. B. Marques, “Sinusoidal signal analysis of electroporation in biological cells,” IEEE Trans. Biomed. Eng., vol. 59, no. 10, pp. 2965-73, Oct. 2012.

I. Zudans, A. Agarwal, O. Orwar, and S. G. Weber, “Numerical calculations of single-cell electroporation with an electrolyte-filled capillary,” Biophys. J., vol. 92, no. 10, pp. 3696-705, May 2007.

J. Teissié and M. P. Rols, “An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization,” Biophys. J., vol. 65, no. 1, pp. 409-413, 1993.

Y. Qin, S. Lai, Y. Jiang, T. Yang, and J. Wang, “Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: A theoretical analysis,” Bioelectrochemistry, vol. 67, no. 1, pp. 57-65, 2005.

“Sensitivity of transmembrane voltage induced by applied electric fields – A theoretical analysis.pdf.”

W. M. Arnold, R. K. Schmutzler, A. G. Schmutzler, H. van der Ven, S. Al-Hasani, D. Krebs, and U. Zimmermann, “Electro-rotation of mouse oocytes: single-cell measurements of zonaintact and zona-free cells and of the isolated zona pellucida,” Biochim. Biophys. Acta (BBA)- Biomembranes, vol. 905, no. 2, pp. 454-464, 1987.

M. Schmeer, T. Seipp, U. Pliquett, S. Kakorin, and E. Neumann, “Mechanism for the conductivity changes caused by membrane electroporation of CHO cell-pellets,” Phys. Chem. Chem. Phys., vol. 6, no. 24, pp. 5564-5574, 2004.

M. Hibino, H. Itoh, and K. Kinosita Jr., “Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential,” Biophys. J., vol. 64, no. 6, pp. 1789- 1800, 1993.

M. Pavlin and D. Miklavčič, “Effective conductivity of a suspension of permeabilized cells: a theoretical analysis,” Biophys. J., vol. 85, no. 2, pp. 719-729, 2003.

M. Pavlin, M. Kandušer, M. Reberšek, G. Pucihar, F. X. Hart, D. Miklavčič, et al., “Effect of cell electroporation on the conductivity of a cell suspension,” Biophys. J., vol. 88, no. 6, pp. 4378- 4390, 2005.

K. Kinosita Jr. and T. Y. Tsong, “Voltage-induced pore formation and hemolysis of human erythrocytes,” Biochim. Biophys. Acta (BBA)- Biomembranes, vol. 471, no. 2, pp. 227-242, 1977.

K. Kinosita Jr. and T. Y. Tsong, “Voltage-induced conductance in human erythrocyte membranes,” Biochim. Biophys. Acta (BBA)-Biomembranes, vol. 554, no. 2, pp. 479-497, 1979.

J. Olofsson, M. Levin, A. Strömberg, S. G. Weber, F. Ryttsén, and O. Orwar, “Scanning electroporation of selected areas of adherent cell cultures,” Anal. Chem., vol. 79, no. 12, pp. 4410-4418, 2007.

K. Nolkrantz, C. Farre, A. Brederlau, R. I. D. Karlsson, C. Brennan, P. S. Eriksson, S. G. Weber, M. Sandberg, and O. Orwar, “Electroporation of single cells and tissues with an electrolyte-filled capillary,” Anal. Chem., vol. 73, no. 18, pp. 4469- 4477, 2001.

A. Agarwal, I. Zudans, E. A. Weber, J. Olofsson, O. Orwar, and S. G. Weber, “Effect of cell size and shape on single-cell electroporation,” Anal. Chem., vol. 79, no. 10, pp. 3589-3596, 2007.

S. Haberl, D. Miklavcic, G. Sersa, W. Frey, and B. Rubinsky, “Cell membrane electroporation-Part 2: the applications,” IEEE Electr. Insul. Mag., vol. 29, no. 1, pp. 29-37, Jan. 2013.

M. M. Sadik, J. Li, J. W. Shan, D. I. Shreiber, and H. Lin, “Quantification of propidium iodide delivery using millisecond electric pulses: Experiments,” Biochim. Biophys. Acta (BBA)- Biomembranes, vol. 1828, no. 4, pp. 1322-1328, 2013.

W. M. Arnold, R. K. Schmutzler, A. G. Schmutzler, H. van der Ven, S. Al-Hasani, D. Krebs, and U. Zimmermann, “Electro-rotation of mouse oocytes: Single-cell measurements of zonaintact and zona-free cells and of the isolated zona pellucida,” Biochim. Biophys. Acta, vol. 905, pp. 454-464, 1987.

##submission.downloads##

已出版

2021-08-18

栏目

General Submission