A Hybrid Explicit-Implicit Scheme for Spectral-Element Time-Domain Analysis of Multiscale Simulation

作者

  • H. Xu Department of Communication Engineering Nanjing University of Science and Technology, Nanjing, 210094, China
  • D. Z. Ding Department of Communication Engineering Nanjing University of Science and Technology, Nanjing, 210094, China
  • R. S. Chen Department of Communication Engineering Nanjing University of Science and Technology, Nanjing, 210094, China

关键词:

Explicit-implicit, iterative NewmarkBeta, multiscale, spectral-element time-domain (SETD) method

摘要

The multiscale simulation usually leads to dense meshes discretization for fine structures, thus making time step size of the spectral-element time-domain (SETD) method extremely small to ensure stability for explicit scheme. In this paper, a hybrid explicit-implicit scheme for SETD is proposed to deal with the simulation of multiscale electromagnetic problems. The central-difference is applied for the coarse region with large cells and the Newmark-Beta scheme is for the fine region with small cells. Then a large size of time step can be selected in the whole domain instead of the one limited by the smallest cell. When solving the matrix equation formed by the implicit scheme, two approaches are employed. One uses the sparse matrix solver UMFPACK directly and the other involves an explicit and iterative scheme. Numerical results show that the hybrid method is an efficient alternative to conventional SETD method for multiscale simulation.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

J. Chen and Q. H. Liu, “A hybrid spectralelement/finite-element method with the explicitimplicit Runge-Kutta time stepping scheme for multiscale computation,” IEEE Antennas and Propagation Society International Symposium, pp. 1-4, July 2010.

Q. He, H. Gan, and D. Jiao, “Explicit timedomain finite-element method stabilized for an arbitrarily large time step,” IEEE Trans. Antennas Propagat., vol. 60, no. 11, pp. 5240-5250, 2012.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, no. 5, pp. 302-307, May 1966.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference TimeDomain Method, Boston, MA, USA: Artech House, 2000.

G. Sun and C. W. Trueman, “Accuracy of three unconditionally-stable FDTD schemes for solving Maxwell’s equations,” Applied Computational Electromagn. Soc. J., vol. 18, pp. 41-47, Nov. 2003.

Y. Yang, R. S. Chen, W. C. Tang, K. Sha, and E. K. N. Yung, “Analysis of planar circuits using unconditionally stable three-dimensional ADIFDTD method,” Microwave and Optical Technology Letters, vol. 46, no. 2, pp. 175-179, July 2005.

J. Jin, The Finite Element Method in Electromagnetics, New York: Wiley, 1993.

R. S. Chen, L. Du, Z. B. Ye, and Y. Yang, “An efficient algorithm for implementing the CrankNicolson scheme in the mixed finite-element time-domain method,” IEEE Trans. Antennas Propagat., vol. 57, no. 10, pp. 3216-3222, Oct. 2009.

L. Du, R. S. Chen, Z. B. Ye, and Y. Yang, “A further study on the use of the alternatingdirection implicit scheme for the finite-element time-domain method,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 775-778, 2009.

S. D. Gedney and U. Navsariwala, “An unconditionally stable finite-element time-domain solution of the vector wave equation,” IEEE Microw. Guided Wave Lett., vol. 5, no. 5, pp. 332- 334, May 1995.

J. Chen and Q. H. Liu, “Discontinuous Galerkin time domain methods for multiscale electromagnetic simulations: A review,” Proc. IEEE, pp. 242-254, 2013.

J. Chen and J. Wang, “Numerical simulation using HIE-FDTD method to estimate various antennas with fine scale structures,” IEEE Trans. Antennas Propagat., vol. 55, no. 12, pp. 3603- 3612, Dec. 2007.

J.-H. Lee and Q. H. Liu, “A 3-D spectral element time-domain method for electromagnetic simulation,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 983-991, May 2007.

J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 437-444, Jan. 2006.

UMFPACK Version 5.1 User Guide, [Online]. Available: http://www.cise.ufl.edu/research/sparse/ umfpack/

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, New York: Cambridge Univ. Press, 1989.

H. Xu and R. S. Chen, “A hybrid unconditionally/ conditionally stable parallel spectral-element timedomain algorithm for multi-scale computation,” IEEE International Conference on Computational Electromagnetics (ICCEM), pp. 169-171, 2015.

S. M. Wang and J. Chen, “A performance study of the iterative ADI-FDTD method,” IEEE Trans. Antennas Propag., vol. 53, no. 10, pp. 3413-3417, Oct. 2005.

##submission.downloads##

已出版

2021-08-18

栏目

General Submission