Study and Applications of an Unconditionally Stable Multi-Resolution Time-Domain Scheme
关键词:
Locally one-dimensional (LOD), multi-resolution time-domain (MRTD), unconditional stability摘要
An unconditionally stable locally one-dimensional multi-resolution time-domain (LOD-MRTD) algorithm is studied, which is free of the Courant-Friedrich-Levy (CFL) stability condition. The LOD-MRTD method is reformulated to get more efficient and simple formulations. The unconditional stability and dispersion equations of the LOD-MRTD in two dimension (2D) case are analyzed, and a 2D example is calculated to demonstrate these characteristics.
##plugins.generic.usageStats.downloads##
参考
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, no. 3, pp. 302-307, Apr. 1996.
A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.
M. Krumpholz and L. P. B. Katehi, “MRTD: new time-domain schemes based on mltiresolution aalysis,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 4, pp. 555-571, Apr. 1996.
Y. Chen, Q. Cao, and R. Mittra, Multi-resolution Time Domain Scheme for Electromagnetic Engineering, John Wiley & Sons Inc., 2005.
C. Represa, C. Pereira, A. C. L. Cabeceira, I. Barba, and J. Represa, “An approach to multi-resolution in time domain based on the discrete wavelet transform,” ACES Journal, vol. 18, no. 3, pp. 210-218, 2003.
Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microwave Opt. Technol. Lett, vol. 15, no. 3, pp. 158-165, 1997.
L. Li and Q. Cao, “Application of the unconditionally stable ADI-MPSTD for scattering analysis,” ICMMT2008 Proceedings, Nanjing, China, vol. 2, pp. 760-763, April 2008.
T. Deveze and W. Tabbara, “A fourth-order scheme for the FDTD algorithm applied to Maxwell’s equations,” IEEE Trans. Antennas Propagat. Soc. Int. Symp., Chicago, IL, pp. 346-349, 1992.
Q. Cao and K. K. Tamma, “Multi-resolution time domain based different wavelet basis studies of scattering of planar stratified medium and rectangular dielectric cylinder,” ACES Journal, vol. 20, no. 1, pp. 86-95, 2005.
S. Barmada, A. Musolino, and M. Raugi, “Wavelet based time domain solution of Multiconductor transmission lines with skin and proximity effect,” IEEE Trans. Electromagn. Compat., vol. 47, no. 4, pp. 774-780, Nov. 2005.
S. Barmada and M. Raugi, “New wavelet based approach for time domain simulations,” IEEE Trans. Antennas. Propagat., vol. 51, no. 7, pp. 1590-1598, July 2003.
Q. Cao, R. Kanapady, and F. Reitich, “High-order Runge-Kutta Multi-resolution time-domain methods for computational electromagnetics,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3316-3326, 2006.
Z. Chen and J. Zhang, “An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition,” IEEE Microwave and Wireless Components Letters, vol. 11, pp. 349-351, 2001.
M. K. Sun and W. Y. Tam, “Stability and dispersion analysis of ADI-MRTD and ADI high-order schemes,” Microwave Opt. Technol. Lett., vol. 45, no. 1, pp. 43-46, 2005.