Combination of Asymptotic Phase Basis Functions and Matrix Interpolation Method for Fast Analysis of Monostatic RCS

作者

  • Yuejin Zhang School of Information Engineering East China Jiaotong University, Nanchang, 330013, China
  • Dechang Huang School of Information Engineering East China Jiaotong University, Nanchang, 330013, China
  • Jiaqi Chen College of Computer and Information Hohai University, Nanjing, 210098, China

关键词:

Interpolation, linear phase basis function, preconditioning technique, monostatic RCS, electromagnetic scattering

摘要

The combination of asymptotic phase basis functions and matrix impedance method is proposed and used for fast computation of monostatic scattering from electrically large object. Since asymptotic phase (AP) basis function can be defined on large patches, less number of unknowns is required than that when using traditional Rao-Wilton-Glisson (RWG) vector basis function. In order to efficiently compute electromagnetic scattering, the flexible general minimal residual (FGMRES) iterative solver is applied to compute the coefficients of the basis functions and the sparse approximate inversion (SAI) preconditioning technique is used to accelerate the iterative solver. However, the impedance matrix varies with incident angles, resulting in significant computation time cost for construction of impedance and SAI preconditioning matrices. This difficulty can be alleviated by using the model-based parameter estimation (MBPE) technique. Both the impedance and SAI preconditioning matrices are interpolated at intermediate angles over a relatively large angular band with rational function interpolation method. Numerical results demonstrate that this method is efficient for monostatic RCS calculation with high accuracy.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

R. F. Harrington, Field Computation by Moment Methods, Malabar, Fla.: R. E. Krieger, 1968.

W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Boston, MA: Artech House, 2001.

J. M. Song, C. C. Lu and W. C. Chew, “Multilevel Fast Multipole Algorithm for Electromagnetic Scattering by Large Complex Objects,” IEEE Trans. Antennas Propagat., vol. 45, no. 10, pp. 1488-1493, 1997.

J. R. Mautz and R. F. Harrington, "H-field, E-field, and Combined Field Solution for Conducting Bodies of Revolution," Arch. Elecktron. Übertragungstech (AEÜ), vol. 32, pp. 157-164, 1978.

Z. Nie, S. Yan, S. He, and J. Hu, “On the Basis Functions with Travelling Wave Phase Factor for Efficient Analysis of Scattering from Electrically Large Targets,” Progress In Electromagnetics Research, PIER 85, pp. 83-114, 2008.

Su Yan, Shiquan He, Zaiping Nie, and Jun Hu, “Calculating the Wide Band Responses from Metallic Objects by Employing the Phase Extracted Basis Functions,” IEEE International Symposium on Antennas and Propagations, 2008.

John Robert Gulick, “A Combination of Rao-Wilton-Glisson and Asymptotic Phase Basic Functions to Solve the Electric and Magnetic Field Integral Equations,” Master of science Department of Electrical and Computer Engineering, 2001.

I. G.-T., J. M. Taboada, J. L. R, F. Obelleiro, and L. Landesa, “Efficient Asymptotic-Phase Modeling of the Induced Currents in the Fast Multipole Method,” Microwave and Optical Technology Letters, vol. 48, no. 8, Aug. 2006.

M. Benzi and M. Tuma, “A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems,” SIAM Journal on Scientific Computing, vol. 19, pp. 968-994, 1998.

P. L. Rui and R. S. Chen, “An Efficient Sparse Approximate Inverse Preconditioning for FMM Implementation,” Micro. Opt. Tech. Lett., vol. 49, no. 7, pp. 1746-1750, 2007.

E. H. Newman, “Generation of Wide-band Data from the Method of Moments by Interpolating the Impedance Matrix,” IEEE Trans. Antennas Propagat, vol. 36, no. 12, pp. 1820-1824, 1988.

K. L. Virga and Y. R. Samii, “Efficient Wide-Band Evaluation of Mobile Communications Antennas using Z or Y Matrix Interpolation with the Method of Moments,” IEEE Trans. Antennas Propagat, vol. 47, no. 1, pp. 65-76, 1999.

X. C. Wei, E. P. Li, “Wide-band EMC Analysis of On-platform Antennas using Impedance-Matrix Interpolation with the Moment of Method-Physical Optics Method,” IEEE Trans. Electromagnetic Compatibility, vol. 45, no. 3, pp. 552-556, 2003.

G. J. Burke, E. K. Miller, S. Chakrabarthi, and K. Demarest, “Using Model-Based Parameter Estimation to Increase the Efficiency of Computing Electromagnetic Transfer Functions,” IEEE Trans. Magn., vol. 25, pp. 2807-2809, July 1989.

C. J. Reddy, M. D. Deshpande, C. R. Cockresll, and F. B. Beck, “Fast RCS Computation Over a Frequency Band using Method of Moments in Conjunction with Asymptotic Waveform Evaluation Technique,” IEEE Trans. Antennas Propagat, vol. 46, no. 8, pp. 1229-1233, August 1998.

Y. E. Erdemli, J. Gong, C. J. Reddy, and J. L.Volakis, “Fast RCS Pattern Fill Using AWE Technique,” IEEE Trans. Antennas Propagat, vol. 46, no. 11, pp. 1752-1753, November 1998.

R. D. Slong, R. Lee, and J. F. Lee. “Multipoint Galerkin Asymptotic Waveform Evaluation for Model Order Reduction of Frequency Domain FEM Electromagnetic Radiation Problems,” IEEE Trans. Antennas Propagat, vol. 49, no. 10, pp. 1504-1513, October 2001.

M. S. Chen, X. L. Wu, W. Sha and Z. X. Huang, “Fast and Accurate Radar Cross-Section Computation over a Broad Frequency Band using the Best Uniform Rational Approximation,” IET Micro. Antennas Propag., vol. 2, no. 2, pp. 200-204, 2008.

Z. W. Liu, D. Z. Ding, Z. H. Fan, and R. S. Chen, “Adaptive Sampling Bicubic Spline Interpolation Method for Fast Computation of Monstatic RCS,” Micro. Opt. Tech. Lett. vol. 50, no. 7, pp. 1851-1857, July 2008.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic Scattering by Surfaces of Arbitrary Shape,” IEEE Trans. Antennas Propagat, vol. 30, no. 3, pp. 409-418, 1982.

Y. Saad and M. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856-869, 1986.

Valeria Simoncini, and Daniel B. Szyld, “Flexible Inner-Outer Krylov Subspace Methods,” SIAM J. Numer. Anal., vol. 40, no. 6, pp. 2219-2239, 2003.

Z. H. Fan, Z. W. Liu, D. Z. Ding, R. S. Chen, “Preconditioning Matrix Interpolation Technique for Fast Analysis of Scattering over Broad Frequency Band,” IEEE Trans. Antenna and Propagation, vol. 58, no. 7, pp. 2484-2487, July 2010.

B. M. Kolundzija, M. S. Tasic, D. I. Olcan, D. P. Zoric, S. M. Stevanetic, “Advanced Techniques for Efficient Modeling of Electrically Large Structures on Desktop PCs,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 27, no. 2, pp. 123-131, February 2012.

Z. N. Jiang, R. S. Chen, Z. H. Fan, S. G. Shen, X. Q. Hu, “Efficient Multilevel Compressed Block Decomposition for Large-Scale Electromagnetic Problems Using Asymptotic Phasefront Extraction,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 26, no. 11, pp. 876-885, November 2011.

Z. Liu, R. Chen, J. Chen, Z. Fan, “Using Adaptive Cross Approximation for Efficient Calculation of Monostatic Scattering with Multiple Incident Angles,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 26, no. 4, pp. 325-333, April 2011.

Z. N. Jiang, Z. H. Fan, D. Z. Ding, R. S. Chen, K. W. Leung, “Preconditioned MDA-SVD-MLFMA for Analysis of Multi-scale Problems,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 25, no. 11, pp. 914-925, November 2010.

R. J. Burkholder, Ç. Tokgöz, C. J. Reddy, W. O. Coburn, “Iterative Physical Optics for Radar Scattering Predictions,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 24, no. 2, pp. 241-258, April 2009.

R. Mittra, “Characteristic Basis Function Method (CBFM)—an Iteration-Free Domain Decomposition Approach in Computational Electromagnetics,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 24, no. 2, pp. 204-223, April 2009.

##submission.downloads##

已出版

2021-10-09

栏目

General Submission