PET-Based Instant Inkjet-Printed 4 × 4 Butler Matrix Beamforming Network
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2022.ACES.J.370208关键词:
Modified coupler, PET Substrate, Butler Matrix, Crossover摘要
In this paper, a novel planar Butler matrix (BM) utilizing only 3dB3dBhybrid couplers and a crossover are implemented using a low-cost silver-nano inkjet printing technique. Unlike in the conventional design of BM where a phase shifter is required, this novel design does not need a phase shifter to be implemented. However, the use of delicate substrates like polyethylene terephthalate (PET) in the design makes it unique. This is not possible with the conventional thermal curing process, as PET substrate cannot be subjected to an excessively feverish temperature. The results obtained show good return loss and transmission coefficients better than 26.1026.10 and 23.54dB23.54dB, respectively, at the center frequency. Similarly, an amplitude imbalance of less than 2.4dB2.4dB with phase mismatch within ±0.25∘±0.25∘ is achieved at the center frequency. The BM has a −10dB-10dB bandwidth of 24.79% with a beam pattern produced at +13∘+13∘,−40∘-40∘, +40∘+40∘, and −13∘-13∘ when ports 1-4 of the BM are energized.
##plugins.generic.usageStats.downloads##
参考
R. J. Gong, Y. L. Ban, J. W. Lian, Y. Liu, and Z. Nie, “Circularly polarized multibeam antenna array of ME dipole fed by 5 × 6 Butler matrix,” IEEE Antennas Wirel. Propag. Lett., 2019.
T. Mbarek, G. Ridha, and G. Ali, “Radiation pattern of a networks antenna supplied with Butler matrix, comparison with a multi-layer structure,” Applied Computational Electromagnetics Society (ACES) Journal, pp. 1785-1792, 2007.
A. K. Vallappil, M. K. A. Rahim, B. A. Khawaja, and M. Aminu-Baba, “Metamaterial based compact branch-line coupler with enhanced bandwidth for use in 5G applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 35, no. 6, pp. 700-708, 2020.
Y. S. Lin and J. H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Tech., 2013.
T. Macnamara, “Simplified design procedures for Butler matrices incorporating 90 degree hybrids or 180 degree hybrids.,” IEE Proc. H Microwaves, Antennas Propag., vol. 134, no. 1, pp. 50-54, 1987.
A. Karimbu Vallappil, M. K. A. Rahim, B. A. Khawaja, and M. N. Iqbal, “Compact metamaterial based 4 × 4 Butler matrix with improved bandwidth for 5G applications,” IEEE Access,2020.
T. Y. Chen and P. L. Chi, “Bandwidth-enhanced branch-line coupler using the center-loaded vertical line and distributed capacitors,” Asia-Pacific Microw. Conf. Proceedings, APMC, vol. 1, no. 1, pp. 989-991, 2012.
C. J. Chen and T. H. Chu, “Design of a 60-GHz substrate integrated waveguide Butler matrix-a systematic approach,” IEEE Trans. Microw. Theory Tech., 2010.
Q. L. Yang, Y. L. Ban, K. Kang, C. Y. D. Sim, and G. Wu, “SIW multibeam array for 5G mobile devices,” IEEE Access, 2016.
W. Arriola, M. Lee, Y. Kim, E. Ryu, and I. S. Kim, “New inkjet printed wideband 3 dB branch line coupler,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, 2011.
K. Tekkouk, J. Hirokawa, R. Sauleau, M. Ettorre, M. Sano, and M. Ando, “Dual-Layer ridged waveguide slot array fed by a Butler matrix with sidelobe control in the 60-GHz band,” IEEE Trans. Antennas Propag., 2015.
K. Wincza and S. Gruszczynski, “Broadband integrated 8 × 8 Butler matrix utilizing quadrature couplers and schiffman phase shifters for multibeam antennas with broadside beam,” IEEE Trans. Microw. Theory Tech., 2016.
H. X. Xu, G. M. Wang, and X. Wang, “Compact Butler matrix using composite right/left handed transmission line,” Electron. Lett., 2011.
Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., 2010.
Y. M. Madany, H. M. Elkamchouchi, and A. A. Salama, “Design and analysis of miniaturized smart antenna system using 1×8 switched Butler Matrix,” 2012 IEEE 13th Annu. Wirel. Microw. Technol. Conf. WAMICON 2012, vol. 2012-Janua, 2012.
L. Abdelghani, T. A. Denidni, and M. Nedil, “Design of a new ultra-wideband 4×4 Butler matrix for beamforming antenna applications,” IEEE Antennas Propag. Soc. AP-S Int. Symp., pp. 2-3, 2012.
M. Nedil, M. A. El Cafsi, T. A. Denidni, and A. Gharsallah, “Novel UWB CB-CPW Butler matrix for wireless applications,” in IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), pp. 1800-1801, 2014.
S. A. Babale, S. K. A. Rahim, M. Jusoh, and L. Zahid, “Branch-line coupler using PDMS and shieldit super fabric conductor,” Appl. Phys. A Mater. Sci. Process., vol. 123, no. 2, 2017.
K. Wincza and S. Gruszczynski, “Broadband integrated 8 × 8 Butler matrix utilizing quadrature couplers and schiffman phase shifters for multibeam antennas with broadside beam,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 8, pp. 2596-2604, 2016.
M. Fakharzadeh, P. Mousavi, S. Safavi-Naeini, and S. H. Jamali, “The effects of imbalanced phase shifters loss on phased array gain,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 192-196,2008.
S. Y. Zheng, W. S. Chan, and K. F. Man, “Broadband phase shifter using loaded transmission line,” IEEE Microw. Wirel. Components Lett., 2010.
S. Sun and L. Zhu, “Miniaturised patch hybrid couplers using asymmetrically loaded cross slots,” IET Microwaves, Antennas Propag., 2010.
G. Tian, J. P. Yang, and W. Wu, “A novel compact Butler matrix without phase shifter,” IEEE Microw. Wirel. Components Lett., 2014.
H. Ren, B. Arigong, M. Zhou, J. Ding, and H. Zhang, “A novel design of 4 × 4 Butler matrix with relatively flexible phase differences,” IEEE Antennas Wirel. Propag. Lett., 2016.
Y. S. Wong, S. Y. Zheng, and W. S. Chan, “Quasi-arbitrary phase-difference hybrid coupler,” IEEE Trans. Microw. Theory Tech., 2012.
M. J. Park, “Comments on quasi-arbitrary phase-difference hybrid coupler,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1397-1398, 2013.
S. Ahmed, F. A. Tahir, A. Shamim, and H. M. Cheema, “A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices,” IEEE Antennas Wirel. Propag. Lett., vol. 14, no. c, pp. 1802-1805, 2015.
Y. Kawahara, S. Hodges, B. S. Cook, C. Zhang, and G. D. Abowd, “Instant inkjet circuits: Lab-based inkjet printing to support rapid prototyping of ubicomp devices,” 2013.
S. A. Babale, S. K. A. Rahim, M. Himdi, S. H. Lawan, F. D. Sani, and A. D. Usman, “Implementation of inkjet-printed 3 dB coupler with equal power division and 45∘ output phase difference,” Microw. Opt. Technol. Lett., vol. 63, no. 4, pp. 1007-1011, 2021.
S. A. Babale, S. K. Abdul Rahim, O. A. Barro, M. Himdi, and M. Khalily, “Single layered 4×4 Butler matrix without phase-shifters and crossovers,” IEEE Access, vol. 6, pp. 77289-77298,2018.
C. Balanis, “Antenna theory: analysis and design, fourth edition,” in John Wiley & Sons, Inc.,2016.