A Memory-Efficient Hybrid Implicit–Explicit FDTD Method for Electromagnetic Simulation
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2022.ACES.J.370202关键词:
Finite Difference Time Domain (FDTD), hybrid Implicit-Explicit FDTD (HIE-FDTD), memory-Efficient摘要
As the explicit finite-difference time-domain (FDTD) method is restricted by the Courant−-Friedrich−-Levy (CFL) stability condition and inefficient for simulation in some situations, implicit methods are developed. The hybrid implicit−-explicit (HIE) FDTD method is one popular method among them. In this paper, a memory-efficient HIE FDTD method is designed for electromagnetic simulation. The proposed HIE-FDTD method is based upon the divergence relationship of electric fields, nearly reduces one field component, and realizes a memory reduction rate of 33% approximately. Two numerical experiments are carried out to validate the proposed method and the results indicate that the proposed memory-efficient HIE-FDTD method can work well.
##plugins.generic.usageStats.downloads##
参考
L. J. Guo, L. X. Guo, and L. P. Gan, “Influence of dusty plasma on antenna radiation,” Physics of Plasmas, vol. 28, no. 8, p. 083701, Aug. 2021.
L. X. Guo and L. J. Guo, “The effect of the inhomogeneous collision frequency on the absorption of electromagnetic waves in a magnetized plasma,” Physics of Plasmas, vol. 24, no. 11, p. 112119, Nov. 2017.
Q. W. Rao, G. J. Xu, P. F. Wang, and Z. Q. Zheng, “Study on the propagation characteristics of terahertz waves in dusty plasma with a ceramic substrate by the scattering matrix method,” Sensors, vol. 21, no. 263, pp. 1-11, Jan. 2021.
Q. W. Rao, G. J. Xu, P. F. Wang, and Z. Q. Zheng, “Study on the propagation characteristics of terahertz waves in dusty plasma with a ceramic substrate by the scattering matrix method,” International Journal of Antennas and Propagation, vol. 2021, no. 6625530, pp. 1-9, Jan. 2021.
Y. Y. Chen, H. B. Wang, and D. L. Zhao, “The applicability of WKB method in studying inhomogeneous dusty plasma,” IEEE Transactions on Plasma Science, vol. 48, no. 1, pp. 275-279, Jan. 2020.
K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propag., vol. AP-14, no. 3, pp. 302-307, May1966.
A. Taflove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Norwood, MA, USA: Artech House, 2005.
D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, Hoboken, NJ, USA:Wiley, 2013.
F. L. Teixeira, “A summary review on 25 years of progress and future challenges in FDTD and FETD techniques,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 25, no. 1, pp. 1-14, Jan. 2010.
T. Namiki, “A new FDTD algorithm based on alternating-direction implicit method”, IEEE Trans. Microw. Theory Techn., vol. 47, no. 10, pp. 2003-2007, Oct. 1999.
J. Chen, “New alternating direction implicit finite-difference time-domain method with higher efficiency,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 27, no. 11, pp. 903-907, Nov. 2012.
T. L. Liang, W. Shao, and S. B. Shi, “Complex-envelope ADE-LOD-FDTD for band gap analysis of plasma photonic crystals,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 33, no. 4, pp. 443-449, Apr.2018.
A. K. Saxena and K. V. Srivastava, “Three-dimensional unconditionally stable LOD-FDTD methods with low numerical dispersion in the desired directions,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 3055-3067, Jul. 2016.
G. L. Sun and C. W. Trueman, “Unconditionally stable Crank–Nicolson scheme for solving two-dimensional Maxwell’s equations”, Electron. Lett., vol. 39, no. 7, pp. 595-597, Apr.2003.
J. X. Li, H. L. Jiang, and N. X. Feng, “Efficient FDTD implementation of the ADE-based CN-PML for the two dimensional TMz waves,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 30, no. 6, pp. 688-691, Jun.2015.
Y. S. Chung, T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, “An unconditionally stable scheme for the finite-difference time-domain method”, IEEE Trans. Microw. Theory Techn., vol. 51, no. 3, pp. 697-704, Mar. 2003.
W. Shao and J. L. Li , “An efficient laguerre-FDTD algorithm for exact parameter extraction of lossy transmission lines,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 27, no. 3, pp. 223-228, Mar.2012.
B. Huang, G. Wang, Y. Jiang, and W. Wang, “A hybrid implicit-explicit FDTD scheme with weakly conditional stability”, Microw. Opt. Technol. Lett., vol. 39, no. 2, pp. 97-101, Oct. 2003.
L. J. Y. Guo, J. Chen, J. G. Wang, and A. X. Zhan, “A new HIE-PSTD method for solving problems with fine and electrically large structures simultaneously,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 31, no. 12, pp. 1397-1340, Dec. 2016.
F. Moharrami and Z. Atlasbaf, “Simulation of multilayer graphene–dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2238-2245, Mar. 2020.
J. Chen, “A review of hybrid implicit explicit finite difference time domain method,” J. Computat. Phys., vol. 363, pp. 256-267, Jun. 2018.
Y. Kong, C. Zhang, and Q. Chu, “An optimized one-step leapfrog HIE-FDTD method with the artificial anisotropy parameters,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 2, pp. 1198-1203, Feb. 2020.
J. Chen and J. Wang, “Comparison between HIE-FDTD method and ADI-FDTD method,” Microw. Opti. Technol. Lett., vol. 49, no. 5, pp. 1001–1005, Mar. 2007.
P. Wu, Y. Xie, H. Jiang, H. Di, and T. Natsuki, “Complex envelope hybrid implicit-explicit procedure with enhanced absorption for bandpass nonreciprocal application,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 533-536, Jun. 2021.
K. L. Zhang, L. Wang, R. P. Li, M. J. Wang, C. Fan, H. X. Zheng, and E. P. Li., “Low-dispersion leapfrog WCS-FDTD with artificial anisotropy parameters and simulation of hollow dielectric resonator antenna array,” IEEE Transactions on Antennas and Propagation. vol. 69, no, 9, pp. 5810-5811, Sep. 2021.
G. D. Kondylis, F. De Flaviis, G. J. Pottie, and T. Itoh, “A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equations,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, pp. 1310-1320, Jul. 2001.
Y. Yi, B. Chen, W. Sheng, and Y. Pei, “A memory-efficient formulation of the unconditionally stable FDTD method for solving Maxwell’s equations,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 12, pp. 3729-3733, Dec. 2007.
B. Liu, B. Q. Gao, W. Tan, and W. Ren, “A new FDTD algorithm - ADI/R-FDTD”, Electromagnetic Compatibility 2002 3rd International Symposium, pp. 250-253, May 2002.
T. B. Yu and B. H Zhou, “A memory-efficient FDTD algorithm for solving Maxwell equations in cylindrical grids,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1382-1384, May 2004.