GTD Model Based Cubic Spline Interpolation Method for Wide-Band Frequency- and Angular- Sweep

作者

  • Zhiwei Liu East China Jiaotong University, Nanchang, 330013, China
  • Rushan Chen Nanjing University of Science and Technology, Nanjing, 210094, China
  • Dazhi Ding Nanjing University of Science and Technology, Nanjing, 210094, China
  • Luo Le Nanjing University of Science and Technology, Nanjing, 210094, China

关键词:

GTD Model Based Cubic Spline Interpolation Method for Wide-Band Frequency- and Angular- Sweep

摘要

A hybrid frequency- and angularsweep interpolation method is proposed for the efficient analysis of the scattering over a broad frequency and angular band. This method hybridizes the cubic spline interpolation method and the GTD model. The cubic spline interpolation method is applied to interpolate the induced currents in the angular domain. The GTD model combined with the matrix pencil method is applied to parameterize the scattering centers over a wide frequency band. In order to efficiently compute electromagnetic scattering, the flexible general minimal residual (FGMRES) iterative solver is applied to compute the coefficients of Rao-Wilton- Glisson (RWG) basis functions. Therefore, a great deal of time can be saved for the calculation of frequency- and angular- sweep. Numerical results demonstrate that this hybrid method is efficient for wide-band RCS calculation with high accuracy.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

R. F. Harrington, Field Computation by

Moment Methods, R. E. Krieger, Malabar,

W. C. Chew, J. M. Jin, E. Michielssen, and

J. M. Song, Fast and Efficient Algorithms in

Computational Electromagnetics, Artech

House, Boston, 2001.

J. M. Song, C. C. Lu, and W. C. Chew,

“Multilevel Fast Multipole Algorithm for

Electromagnetic Scattering by Large

Complex Objects,” IEEE Trans. Antennas

Propagat., vol. 45, no. 10, pp. 1488-1493,

G. J. Burke, E. K. Miller, S. Chakrabarthi,

and K. Demarest, “Using Model-Based

Parameter Estimation to Increase the

Efficiency of Computing Electromagnetic

Transfer Functions,” IEEE Trans. Magn.,

vol. 25, pp. 2807-2809, July 1989.

C. J. Reddy, M. D. Deshpande, C. R.

Cockresll, and F. B. Beck, “Fast RCS

Computation Over a Frequency Band using

Method of Moments in Conjunction with

Asymptotic Waveform Evaluation

Technique,” IEEE Trans. Antennas

Propagat, vol. 46, no. 8, pp. 1229-1233,

August 1998.

Y. E. Erdemli, J. Gong, C. J. Reddy, and J.

L.Volakis, “Fast RCS Pattern Fill Using

AWE Technique,” IEEE Trans. Antennas

Propagat, vol. 46, no. 11, pp. 1752-1753,

November 1998.

R. D. Slong, R. Lee, and J. F. Lee.

“Multipoint Galerkin Asymptotic Waveform

Evaluation for Model Order Reduction of

Frequency Domain FEM Electromagnetic

Radiation Problems,” IEEE Trans. Antennas

Propagat, vol. 49, no. 10, pp. 1504-1513,

October 2001.

M. S. Chen, X. L. Wu, W. Sha, and Z. X.

Huang, “Fast and Accurate Radar CrossSection Computation Over a Broad

Frequency Band Using the Best Uniform

Rational Approximation,” IET Micro.

Antennas Propag., vol. 2, no. 2, pp. 200-

, 2008.

Z. W. Liu, D. Z. Ding, Z. H. Fan, and R. S.

Chen, “Adaptive Sampling Bicubic Spline

Interpolation Method for Fast Computation

of Monstatic RCS,” Micro. Opt. Tech. Lett.

vol. 50, no. 7, pp. 1851-1857, July 2008.

E. H. Newman, “Generation of Wide-Band

Data from the Method of Moments by

Interpolating the Impedance Matrix,” IEEE

ACES JOURNAL, VOL. 26, NO. 8, AUGUST 2011

Trans. Antennas Propagat, vol. 36, no. 12,

pp. 1820-1824, 1988.

K. L. Virga and Y. R. Samii, “Efficient

Wide-Band Evaluation of Mobile

Communications Antennas using Z or Y

Matrix Interpolation with the Method of

Moments,” IEEE Trans. Antennas Propagat,

vol. 47, no. 1, pp. 65-76, 1999.

X. C. Wei and E. P. Li, “Wide-Band EMC

Analysis of On-Platform Antennas using

Impedance-Matrix Interpolation with the

Moment of Method-Physical Optics

Method,” IEEE Trans. Electromagnetic

Compatibility, vol. 45, no. 3, pp. 552-556,

L. C. Potter, D. -M. Chiang, R. Carriere, and

M. J. Gerry, “A GTD-Based Parametric

Model for Radar Scattering,” IEEE Trans.

Antennas Propagat, vol. 43, no. 10, pp.

-1067, 1995.

R. Bhalla, H. Ling, J. Moore, D. J. Andersh,

S. W. Lee, and J. Hughes, “3D Scattering

Center Representation of Complex Targets

using the Shooting and Bouncing Ray

Technique: A Review,” IEEE Antennas and

Propagation Magazine, vol. 40, no. 5, pp.

-39, October 1998.

Y. Wang, H. Ling, J. Song, and W. C.

Chew, “A Frequency Extrapolation

Algorithm for FISC,” IEEE Trans. Antennas

Propagat, vol. 45, no. 12, pp.1891-1893,

December 1997.

W. Jing and Z. Jianjiang, “Modified MEMP

Method for 2D Scattering Center

Measurement Based on GTD Model,”

ICMMT2008 Proceedings, Nanjing, China,

T. K. Sarka and O. Pereira, “Using the

Matrix Pencil Method to Estimate the

Parameters of a Sum of Complex

Exponentials,” IEEE Trans. Antennas

Propagat, vol. 37, no. 1, pp. 48-55, February

Q. Li, Z. Guan, and F. Bai. Numerical

Computation Theory, Publishing House of

TsingHua University, Beijng, 2000.

Y. Saad and M. Schultz. “GMRES: A

Generalized Minimal Residual Algorithm

for Solving Nonsymmetric Linear Systems,”

SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp.

-869, 1986.

V. Simoncini and D. B. Szyld, “Flexible

Inner-Outer Krylov Subspace Methods,”

SIAM J. Numer. Anal., vol. 40, no. 6, pp.

-2239, 2003.

A. C. Woo, H. T. G. Wang, M. J. Schuh,

“Benchmark Radar Targets for the

Validation of Computational

Electromagnetics Programs,” IEEE Trans.

Antennas Propagat, vol. 35, no. 1, pp. 84-89,

February 1993.

F. Deek and M. El-Shenawee, “Microwave

Detection of Cracks in Buried Pipes using

the Complex Frequency Technique,”

Applied Computational Electromagnetic

Society (ACES) Journal, vol. 25, no. 10, pp.

–902, October 2010.

##submission.downloads##

已出版

2022-05-02

栏目

General Submission