A Novel Green’s Function Analysis of Wave Scattering by an Infinite Grating using Complex Images Technique
关键词:
A Novel Green’s Function Analysis of Wave Scattering by an Infinite Grating using Complex Images Technique摘要
A new method, based on the complex images technique is presented for solving the electromagnetic scattering from the infinite metallic and dielectric gratings. The main idea of this method lies in representing the infinite summation of the structure period Green's functions in terms of finite summations of complex images. The method of moments (MoM) is then employed to find the current distribution, reflection and transmission coefficients of the gratings. The validity of the presented method is shown through various examples for different grating geometries and incident wave polarizations. Fast convergence, simple formulations and flexibility of the method in analyzing different structures are the main advantages of the proposed method.
##plugins.generic.usageStats.downloads##
参考
H. Lamb, “On the reflection and transmission of
electric waves by metallic grating,” Proc. London
Math. Soc. vol. 29, no. 1, pp. 523-545, 1898.
L. Rayleigh, “On the dynamical theory of grating,”
Proc. R. Soc. (London), Ser. A, vol. 79, pp. 399-416,
V. Twersky, “On scattering of waves by the infinite
grating of circular cylinders,” IRE Trans. Antennas
Propagat., vol. 10, pp. 737-765, Nov. 1962.
M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R.
Sambles, “One-way diffraction grating,” Phys. Rev.
E 74, 056611, 2006.
J. M. Lourtioz, A. de Lustrac, F. gadot, S. Rowson,
A. Chelnokov, T. Brillat, A. Ammouche, J. Danglot,
O. Vanbesien, and D. Lippens, “Toward controllable
photonic crystals for centimeter- and millimeter-
wave devices,” J. Lightw. Technol., vol. 17, no. 11,
pp. 2025-2031, Nov. 1999.
A. Scherer, T. Doll, E. Yablonovitch, H. O. Everitt,
and J. A. Higgins, “Special section on
electromagnetic crystal structures, design, synthesis,
and applications,” J. Lightw. Technol., vol. 17, no.
, pp. 1928-2207, 1999.
B. Pradarutti, C. Rau, G. Torosyan, and R. Beigang,
“Plasmonic response in a one-dimensional periodic
structure of metallic rods,” Appl. Phys. Lett. 87,
, 2005.
K. F. Tsang, L. Mo, and Z. B. Ye, “Analysis of
millimeter wave scattering by the infinite plane
metallic grating using PCG-FFT technique,”
International J. Infrared Millimeter waves, vol. 24,
no. 6, pp. 1005-1022, Jun. 2003.
K. Yasumoto, H. Toyama, and T. Kushta, “Accurate
analysis of two-dimensional electromagnetic
scattering from multilayered periodic arrays of
circular cylinders using lattice sums technique,”
IEEE Trans. Antennas Propagat., vol. 52, no. 10, pp.
-2611, Oct. 2004.
E. Popov and B. Bozhkov, “Differential method
applied for photonic crystals,” Appl. Opt., vol. 39,
no. 27, pp. 4926-4932, 2000.
M. Koshibe, Y. Tsuji, and M. Hikari, “Time-domain
beam propagation methods and its application to
photonic crystal circuits,” J. Lightw. Technol., vol.
, no. 1, Jan. 2000.
S. F. Halfert and R. Pregla, “Efficient analysis of
periodic structures,” J. Lightw. Technol., vol. 16, no.
, Sep. 1998.
H. Jia and K. Yasumoto, “S-Matrix solution of
electromagnetic scattering from periodic arrays of
metallic cylinders with arbitrary cross section,” IEEE
Antennas Wireless Propagat. Lett., vol. 3, pp. 41-44,
Jan. 2004.
M. Ohki, T. Kurihara, and S. Kozaki, “Analysis of
electromagnetic wave diffraction from a metallic
Fourier grating by using the T-matrix method,”
JEMWA, vol. 11, pp. 1257-1272, 1997.
M. Ohki, K. Sato, M. Matsumoto, and S. Kozaki, “T-
Matrix analysis of electromagnetic wave diffraction
form a dielectric coated Fourier grating,” PIER, vol.
, pp. 91-108, 2005.
H. A. Kalhor, “EM scattering by an array of perfectly
conducting strips by a physical optics
approximation,” IEEE Trans. Antennas Propagat.,
vol. 28, no. 2, pp. 277-278, Mar. 1980.
N. P. K. Cotter, T. W. Preist, and J. R. sambles,
“Scattering-matrix approach to multilayer
diffraction,” J. Opt. Soc. Am. A, vol. 12, pp. 1097-
, 1995.
R. Petit, Electromagnetic Theory of Gratings,
Springer-verlag, New York 1980.
ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009
R. Collin, Field Theory of Guided Waves. McGraw-
Hill, New York, USA, 2nd ed., 1991.
S. Singh, W. F. Richards, J. R. Zinecker, and D. R.
Wilton, “Accelerating the Convergence of Series
Representing the Free Space Periodic Green’s
function”, IEEE Trans. Antennas Propagat., vol. 38,
no. 12, pp. 1958-1962, Dec. 1990.
R. Lampe, P. Klock, and P. Mayes, “Integral
Transforms Useful for the Accelerated Summation of
Periodic Free-Space Green’s Function,” IEEE Trans.
Microw. Theory Tech., vol. 33, no. 8, pp. 734-736,
Aug. 1985.
Y. L. Chow, J. J. Yang, D. G. Fang, and G. E.
Howard, “A closed-form spatial Green's function for
the thick microstrip substrate,” IEEE Trans. Microw.
Theory Tech., vol. 39, no. 3, pp. 588- 592, Mar.
Y. Hua and T. K. Sarkar, “Generalized Pencil-of-
Function method for extracting poles of an EM
system from its transient response,” IEEE Trans.
Antennas Propagat., vol. 37, pp. 229-234, 1989.
R. F. Harrington, Field Computation by Moment
Methods. New York: IEEE Press, 2nd Ed., 1993.
T. Kushta and K. Yasumoto, “Electromagnetic
scattering from Periodic Arrays of Two Circular
Cylinders per Unit Cell,” PIER, vol. 29, pp.69-85,