A Perspective on the 40-Year History of FDTD Computational Electrodynamics
关键词:
A Perspective on the 40-Year History of FDTD Computational Electrodynamics摘要
This paper arises from an invited plenary talk by the author at the 2006 Applied Computational Electromagnetics Society Symposium in Miami, FL (The 71 original slides can be downloaded at http://www.ece.northwestern.edu/ecefaculty/ taflove/ACES_talk.pdf). This paper summarizes the author’s perspectives on the history and future prospects of finite-difference time-domain (FDTD) computational electrodynamics on the occasion of the fortieth anniversary of the publication of Kane Yee’s seminal Paper #1. During these four decades, advances in basic theory, software realizations, and computing technology have elevated FDTD techniques to the top rank of computational tools for engineers and scientists studying electrodynamic phenomena and systems.
##plugins.generic.usageStats.downloads##
参考
K. S. Yee, “Numerical solution of initial
boundary value problems involving
Maxwell’s equations in isotropic media,”
IEEE Trans. Antennas Propagat., vol. 14, pp.
–307, 1966.
K. L. Shlager and J. B. Schneider, “A Survey
of the Finite-Difference Time-Domain
Literature,” Chap. 1 in Advances in Computa-
tional Electrodynamics: The Finite-Difference
Time-Domain Method, A. Taflove, ed.,
Norwood, MA: Artech House, 1998.
A. Taflove and M. E. Brodwin, “Numerical
solution of steady-state electromagnetic
scattering problems using the time-dependent
Maxwell’s equations,” IEEE Trans.
Microwave Theory Tech., vol. 23, pp. 623–
, 1975.
A. Taflove and M. E. Brodwin, “Computation
of the electromagnetic fields and induced
temperatures within a model of the
microwave-irradiated human eye,” IEEE
Trans. Microwave Theory Tech., vol. 23, pp.
–896, 1975.
R. Holland, “Threde: a free-field EMP
coupling and scattering code,” IEEE Trans.
Nuclear Sci., vol. 24, pp. 2416–2421, 1977.
K. S. Kunz and K. M. Lee, “A three-
dimensional finite-difference solution of the
external response of an aircraft to a complex
transient EM environment I: The method
and its implementation,” IEEE Trans.
Electromagn. Compat., vol. 20, pp. 328–333,
B. Engquist and A. Majda, “Absorbing
boundary conditions for the numerical
simulation of waves,” Mathematics of
Computation, vol. 31, pp. 629–651, 1977.
A. Bayliss and E. Turkel, “Radiation
boundary conditions for wave-like equations,”
Comm. Pure Appl. Math., vol. 23, pp. 707–
, 1980.
A. Taflove, “Application of the finite-
difference time-domain method to sinusoidal
steady-state electromagnetic penetration
problems,” IEEE Trans. Electromagn.
Compat., vol. 22, pp. 191–202, 1980.
G. Mur, “Absorbing boundary conditions for
the finite-difference approximation of the
time-domain electromagnetic field equations,”
IEEE Trans. Electromagn. Compat., vol. 23,
pp. 377–382, 1981.
K. R. Umashankar and A. Taflove, “A novel
method to analyze electromagnetic scattering
of complex objects,” IEEE Trans.
Electromagn. Compat., vol. 24, pp. 397–405,
A. Taflove and K. R. Umashankar, “Radar
cross section of general three-dimensional
scatterers,” IEEE Trans. Electromagn.
Compat., vol. 25, pp. 433–440, 1983.
Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F.
Yuan, “A transmitting boundary for transient
wave analyses,” Scientia Sinica (series A),
vol. XXVII, pp. 1063–1076, 1984.
TAFLOVE: 40-YEAR HISTORY OF FDTD
W. Gwarek, “Analysis of an arbitrarily
shaped planar circuit — A time-domain
approach,” IEEE Trans. Microwave Theory
Tech., vol. 33, pp. 1067–1072, 1985.
D. H. Choi and W. J. Hoefer, “The finite-
difference time-domain method and its
application to eigenvalue problems,” IEEE
Trans. Microwave Theory Tech., vol. 34, pp.
–1470, 1986.
G. A. Kriegsmann, A. Taflove, and K. R.
Umashankar, “A new formulation of electro-
magnetic wave scattering using an on-surface
radiation boundary condition approach,”
IEEE Trans. Antennas Propagat., vol. 35, pp.
–161, 1987.
T. G. Moore, J. G. Blaschak, A. Taflove, and
G. A. Kriegsmann, “Theory and application
of radiation boundary operators,” IEEE
Trans. Antennas Propagat., vol. 36, pp.
–1812, 1988.
K. R. Umashankar, A. Taflove, and B. Beker,
“Calculation and experimental validation of
induced currents on coupled wires in an
arbitrary shaped cavity,” IEEE Trans.
Antennas Propagat., vol. 35, pp. 1248–1257,
A. Taflove, K. R. Umashankar, B. Beker, F.
A. Harfoush, and K. S. Yee, “Detailed FDTD
analysis of electromagnetic fields penetrating
narrow slots and lapped joints in thick
conducting screens,” IEEE Trans. Antennas
Propagat., vol. 36, pp. 247–257, 1988.
T. G. Jurgens, A. Taflove, K. R. Umashankar,
and T. G. Moore, “Finite-difference time-
domain modeling of curved surfaces,” IEEE
Trans. Antennas Propagat., vol. 40, pp. 357–
, 1992.
A. C. Cangellaris, C.-C. Lin, and K. K. Mei,
“Point-matched time-domain finite element
methods for electromagnetic radiation and
scattering,” IEEE Trans. Antennas Propagat.,
vol. 35, pp. 1160–1173, 1987.
V. Shankar, A. H. Mohammadian, and W. F.
Hall, “A time-domain finite-volume treatment
for the Maxwell equations,” Electromag-
netics, vol. 10, pp. 127–145, 1990.
N. K. Madsen and R. W. Ziolkowski, “A
three-dimensional modified finite volume
technique for Maxwell’s equations,”
Electromagnetics, vol. 10, pp. 147–161,
D. M. Sullivan, O. P. Gandhi, and A. Taflove,
“Use of the finite-difference time-domain
method in calculating EM absorption in man
models,” IEEE Trans. Biomed. Engrg., vol.
, pp. 179–186, 1988.
X. Zhang, J. Fang, K. K. Mei, and Y. Liu,
“Calculation of the dispersive characteristics
of microstrips by the time-domain finite-
difference method,” IEEE Trans. Microwave
Theory Tech., vol. 36, pp. 263–267, 1988.
J. Fang, Time-Domain Finite Difference
Computations for Maxwell’s Equations,
Ph.D. dissertation, EECS Dept., Univ. of
California, Berkeley, CA, 1989.
T. Kashiwa and I. Fukai, “A treatment by
FDTD method of dispersive characteristics
associated with electronic polarization,”
Microwave Optics Tech. Lett., vol. 3, pp.
–205, 1990.
R. Luebbers, F. Hunsberger, K. Kunz, R.
Standler, and M. Schneider, “A frequency-
dependent finite-difference time-domain
formulation for dispersive materials,” IEEE
Trans. Electromagn. Compat., vol. 32, pp.
–229, 1990.
R. M. Joseph, S. C. Hagness, and A. Taflove,
“Direct time integration of Maxwell’s
equations in linear dispersive media with
absorption for scattering and propagation of
femtosecond electromagnetic pulses,” Optics
Lett., vol. 16, pp. 1412–1414, 1991.
J. G. Maloney, G. S. Smith, and W. R. Scott,
Jr., “Accurate computation of the radiation
from simple antennas using the finite-
difference time-domain method,” IEEE
Trans. Antennas Propagat., vol. 38, pp.
–1065, 1990.
D. S. Katz, A. Taflove, M. J. Piket-May, and
K. R. Umashankar, “FDTD analysis of
electromagnetic wave radiation from systems
containing horn antennas,” IEEE Trans.
Antennas Propagat., vol. 39, pp. 1203–1212,
P. A. Tirkas and C. A. Balanis, “Finite-
difference time-domain technique for
radiation by horn antennas,” Proc. 1991 IEEE
Antennas Propagat. Soc. Intl. Symp., vol. 3,
pp. 1750–1753, 1991.
ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007
E. Sano and T. Shibata, “Fullwave analysis of
picosecond photoconductive switches,” IEEE
J. Quantum Electron., vol. 26, pp. 372–377,
S. M. El-Ghazaly, R. P. Joshi, and R. O.
Grondin, “Electromagnetic and transport
considerations in subpicosecond photo-
conductive switch modeling,” IEEE Trans.
Microwave Theory Tech., vol. 38, pp. 629–
, 1990.
R. J. Luebbers, K. S. Kunz, M. Schneider,
and F. Hunsberger, “A finite-difference time-
domain near zone to far zone transformation,”
IEEE Trans. Antennas Propagat., vol. 39,
pp. 429–433, 1991.
P. M. Goorjian and A. Taflove, “Direct time
integration of Maxwell’s equations in
nonlinear dispersive media for propagation
and scattering of femtosecond electromag-
netic solitons,” Optics Lett., vol. 17, pp. 180–
, 1992.
R. W. Ziolkowski and J. B. Jerkins, “Full-
wave vector Maxwell’s equations modeling
of self-focusing of ultra-short optical pulses
in a nonlinear Kerr medium exhibiting a finite
response time,” J. Optical Soc. America B,
vol. 10, pp. 186–198, 1993.
R. M. Joseph and A. Taflove, “Spatial soliton
deflection mechanism indicated by FDTD
Maxwell’s equations modeling,” IEEE
Photonics Tech. Lett., vol. 2, pp. 1251–1254,
W. L. Ko and R. Mittra, “A combination of
FDTD and Prony’s methods for analyzing
microwave integrated circuits,” IEEE Trans.
Microwave Theory Tech., vol. 39, pp. 2176–
, 1991.
J. A. Pereda, L. A. Vielva, and A. Prieto,
“Computation of resonant frequencies and
quality factors of open dielectric resonators
by a combination of the finite-difference
time-domain (FDTD) and Prony’s methods,”
IEEE Microwave Guided Wave Lett., vol. 2,
pp. 431–433, 1992.
J. Chen, C. Wu, T. K. Y. Lo, K.-L. Wu, and J.
Litva, “Using linear and nonlinear predictors
to improve the computational efficiency of
the FDTD algorithm,” IEEE Trans.
Microwave Theory Tech., vol. 42, pp. 1992–
, 1994.
V. Jandhyala, E. Michielssen, and R. Mittra,
“FDTD signal extrapolation using the
forward-backward autoregressive (AR)
model,” IEEE Microwave Guided Wave Lett.,
vol. 4, pp. 163–165, 1994.
S. Dey and R. Mittra, “Efficient computation
of resonant frequencies and quality factors of
cavities via a combination of the finite-
difference time-domain technique and the
Padé approximation,” IEEE Microwave
Guided Wave Lett., vol. 8, pp. 415–417, 1998.
W. Sui, D. A. Christensen, and C. H. Durney,
“Extending the two-dimensional FDTD
method to hybrid electromagnetic systems
with active and passive lumped elements,”
IEEE Trans. Microwave Theory Tech., vol.
, pp. 724–730, 1992.
B. Toland, B. Houshmand, and T. Itoh,
“Modeling of nonlinear active regions with
the FDTD method,” IEEE Microwave Guided
Wave Lett., vol. 3, pp. 333–335, 1993.
V. A. Thomas, M. E. Jones, M. J. Piket-May,
A. Taflove, and E. Harrigan, “The use of
SPICE lumped circuits as sub-grid models for
FDTD high-speed electronic circuit design,”
IEEE Microwave Guided Wave Lett., vol. 4,
pp. 141–143, 1994.
J. P. Berenger, “A perfectly matched layer for
the absorption of electromagnetic waves,”
J. Comp. Phys., vol. 114, pp. 185–200, 1994.
D. S. Katz, E. T. Thiele, and A. Taflove,
“Validation and extension to three
dimensions of the Berenger PML absorbing
boundary condition for FDTD meshes,” IEEE
Microwave Guided Wave Lett., vol. 4, pp.
–270, 1994.
C. E. Reuter, R. M. Joseph, E. T. Thiele, D.
S. Katz, and A. Taflove, “Ultrawideband
absorbing boundary condition for termination
of waveguiding structures in FDTD
simulations,” IEEE Microwave Guided Wave
Lett., vol. 4, pp. 344–346, 1994.
Z. S. Sacks, D. M. Kingsland, R. Lee, and J.
F. Lee, “A perfectly matched anisotropic
absorber for use as an absorbing boundary
condition,” IEEE Trans. Antennas Propagat.,
vol. 43, pp. 1460–1463, 1995.
TAFLOVE: 40-YEAR HISTORY OF FDTD
S. D. Gedney, “An anisotropic perfectly
matched layer absorbing media for the
truncation of FDTD lattices,” IEEE Trans.
Antennas Propagat., vol. 44, pp. 1630–1639,
R. W. Ziolkowski, J. M. Arnold, and D. M.
Gogny, “Ultrafast pulse interactions with
two-level atoms,” Phys. Rev. A , vol. 52, pp.
–3094, 1995.
A. S. Nagra and R. A. York, “FDTD analysis
of wave propagation in nonlinear absorbing
and gain media,” IEEE Trans. Antennas
Propagat., vol. 46, pp. 334–340, 1998.
Y. Huang, Simulation of Semiconductor
Materials Using FDTD Method, M.S. thesis,
Northwestern University, Evanston, IL, 2002.
S.-H. Chang and A. Taflove, “Finite-
difference time-domain model of lasing
action in a four-level two-electron atomic
system,” Optics Express, vol. 12, pp. 3827–
, 2004.
M. Krumpholz and L. P. B. Katehi, “MRTD:
New time-domain schemes based on
multiresolution analysis,” IEEE Trans.
Microwave Theory Tech., vol. 44, pp. 555–
, 1996.
Q. H. Liu, The PSTD Algorithm: A Time-
Domain Method Requiring Only Two Grids
Per Wavelength, New Mexico State Univ.,
Las Cruces, NM, Tech. Rept. NMSU-ECE96-
, 1996.
Q. H. Liu, “The pseudospectral time-domain
(PSTD) method: A new algorithm for
solutions of Maxwell’s equations,” Proc.
I EEE Antennas Propagat. Soc. Intl.
Symp., vol. 1, pp. 122–125, 1997.
O. M. Ramahi, “The complementary
operators method in FDTD simulations,”
IEEE Antennas Propagat. Mag., vol. 39, pp.
–45, Dec. 1997.
S. Dey and R. Mittra, “A locally conformal
finite-difference time-domain algorithm for
modeling three-dimensional perfectly
conducting objects,” IEEE Microwave
Guided Wave Lett., vol. 7, pp. 273–275, 1997.
J. G. Maloney and M. P. Kesler, “Analysis of
Periodic Structures,” Chap. 6 in Advances in
Computational Electrodynamics: The Finite-
Difference Time-Domain Method, A. Taflove,
(ed.), Norwood, MA: Artech House, 1998.
J. B. Schneider and C. L. Wagner, “FDTD
dispersion revisited: Faster-than-light
propagation,” IEEE Microwave Guided Wave
Lett., vol. 9, pp. 54–56, 1999.
T. Namiki, “3-D ADI-FDTD method —
Unconditionally stable time-domain
algorithm for solving full vector Maxwell’s
equations,” IEEE Trans. Microwave Theory
Tech., vol. 48, pp. 1743–1748, 2000.
F. Zheng, Z. Chen, and J. Zhang, “Toward the
development of a three-dimensional
unconditionally stable finite-difference time-
domain method,” IEEE Trans. Microwave
Theory Tech., vol. 48, pp. 1550–1558, 2000.
J. A. Roden and S. D. Gedney, “Convolu-
tional PML (CPML): An efficient FDTD
implementation of the CFS-PML for arbitrary
media,” Microwave Optical Tech. Lett., vol.
, pp. 334–339, 2000.
T. Rylander and A. Bondeson, “Stable
FDTD-FEM hybrid method for Maxwell’s
equations,” Comput. Phys. Comm., vol. 125,
pp. 75–82, 2000.
M. Hayakawa and T. Otsuyama, “FDTD
analysis of ELF wave propagation in inhomo-
geneous subionospheric waveguide models,”
ACES J., vol. 17, pp. 239–244, 2002.
J. J. Simpson and A. Taflove, “Three-
dimensional FDTD modeling of impulsive
ELF propagation about the Earth-sphere,”
IEEE Trans. Antennas Propagat., vol. 52, pp.
–451, 2004.
J. J. Simpson, R. P. Heikes, and A. Taflove,
“FDTD modeling of a novel ELF radar for
major oil deposits using a three-dimensional
geodesic grid of the Earth-ionosphere
waveguide,“ IEEE Trans. Antennas
Propagat., vol. 54, pp. 1734-1741, 2006.
H. De Raedt, K. Michielsen, J. S. Kole, and
M. T. Figge, “Solving the Maxwell equations
by the Chebyshev method: A one-step finite
difference time-domain algorithm,” IEEE
Trans. Antennas Propagat., vol. 51, pp.
–3160, 2003.
N. Chavannes, R. Tay, N. Nikoloski, and N.
Kuster, “Suitability of FDTD-based TCAD
tools for RF design of mobile phones,” IEEE
Antennas Propagat. Magazine, vol. 45, pp.
–66, Dec. 2003.
ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007
E. J. Bond, X. Li, S. C. Hagness, and B. D.
Van Veen, “Microwave imaging via space-
time beamforming for early detection of
breast cancer,” IEEE Trans. Antennas
Propagat., vol. 51, pp. 1690– 1705, 2003.
J. J. Simpson, A. Taflove, J. A. Mix, and
H. Heck, “Substrate integrated waveguides
optimized for ultrahigh-speed digital inter-
connects,“ IEEE Trans. Microwave Theory
Tech., vol. 54, pp. 1983-1990, 2006.
H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju,
J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H.
Lee, “Electrically driven single-cell photonic
crystal laser,” Science, vol. 305, pp. 1444–
, 2004.
L. Yin, V. K. Vlasko-Vlasov, A. Rydh,
J. Pearson, U. Welp, S.-H. Chang, S. K. Gray,
G. C. Schatz, D. B. Brown, and C. W.
Kimball, “Surface plasmons at single
nanoholes in Au films,” Applied Physics
Lett., vol. 85, pp. 467–469, 2004.
M. F. Yanik, S. Fan, M. Soljacic, and J. D.
Joannopoulos, “All-optical transistor action
with bistable switching in a photonic crystal
cross-waveguide geometry,” Optics Lett., vol.
, pp. 2506–2508, 2003.
X. Li, A. Taflove, and V. Backman, “Recent
progress in exact and reduced-order modeling
of light-scattering properties of complex
structures,” IEEE J. Selected Topics in
Quantum Electronics, Special Issue on
Biophotonics, vol. 11, pp. 759-765, 2005.
H. K. Roy, Y. Liu, R. Wali, Y. L. Kim, A. K.
Kromine, M. J. Goldberg, and V. Backman,
“Four-dimensional elastic light-scattering
fingerprints as preneoplastic markers in the
rat model of colon carcinogenesis,” Gastro-
enterology, vol. 126, pp. 1071–1081, 2004.
H. K. Roy, Y. L. Kim, Y. Liu, R. K. Wali, M.
J. Goldberg, V. Turhitsky, J. Horwitz, and
V. Backman, “Risk-stratification of colon
carcinogenesis through enhanced backscat-
tering (EBS) spectroscopy analysis of the
uninvolved colonic mucosa,” Clinical Cancer
Research, vol. 19, pp. 961–968, 2006.
X. Li, “Synthesis of backscattering
microscope amplitude images from FDTD-
computed near fields,” manuscript in
preparation.
Y. Liu, P. Pradhan, X. Li, Y. L. Kim, R. K.
Wali, H. K. Roy, A. Taflove, and V.
Backman, “Alteration of intracellular
mesoscopic light transport in the earliest stage
of carcinogenesis demonstrated by single-cell
partial-wave spectroscopy,” manuscript in
preparation.
S. H. Tseng, A. Taflove, D. Maitland, and
V. Backman, “Pseudospectral time-domain
simulations of multiple light scattering in
three-dimensional macroscopic random
media,” Radio Science, vol. 41, RS4009,
doi:10.1029/2005RS003408, 2006.