Cascading Optical Negative Index Metamaterials
关键词:
Cascading Optical Negative Index Metamaterials摘要
We use a spatial harmonic analysis (SHA) method to homogenize optical metamaterials with a negative refractive index; the method provides a more general approach than other methods for estimating the effective index of materials arranged of cascaded elementary layers. The approach is validated for a single layer and a triple layer two dimensional metal grating.
##plugins.generic.usageStats.downloads##
参考
L. I. Mandel’shtam, “Group velocity in crystal lattice,” JETP, vol. 15, pp. 475, 1945.
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε
and µ,” Soviet Physics Uspekhi, vol. 10, pp. 509–
, 1968.
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, Apr. 2001.
J. B. Pendry, “Negative refraction makes a perfect
lens,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3966–
, Oct. 2000.
A. V. Kildishev, W. Cai, U. K. Chettiar, H. K.
Yuan, A. K. Sarychev, V. P. Drachev, and V. M.
Shalaev, “Negative refractive index in optics of
metal-dielectric composites,” J. of Opt. Soc. Am. B,
vol. 23, no. 3, pp. 423–433, Mar. 2006.
J. D. Vacchione and R. Mittra, “Cascading of Multiscreen Frequency Selective Surfaces,” in Frequency Selective Surface and Grid Array, T. K.
Wu, Ed. John Wiley & Sons, 1995.
C. B. Burkhardt, “Diffraction of a Plane Wave at a
Sinusoidally Stratified Dielectric Grating,” J. Opt.
Soc. Am., vol. 56, no. 11, pp. 1502–1509, Nov.
F. G. Kaspar, “Diffraction by thick, periodically
stratified gratings with complex dielectric constant”, J. Opt. Soc. Am., vol. 63, no. 1, pp. 37–45,
Jan. 1973.
K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,”
J. Opt. Soc. Am., vol. 68, no. 9, pp. 1206–1210,
Sept. 1978.
M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J.
Opt. Soc. Am., vol. 71, no. 7, pp. 811–818, July
M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction – E-mode
ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007
polarization and losses,” J. Opt. Soc. Am., vol. 73,
no. 4, pp. 451–455, Apr. 1983.
M. G. Moharam and T. K. Gaylord, “Threedimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am., vol. 73,
no. 9, pp. 1105–1112, Sept. 1983.
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L.
Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta, vol. 28, no.
, pp. 413–428, 1981.
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L.
Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta,
vol. 28, no. 8, pp. 1087–1102, 1981.
L. C. Botten, M. S. Craig, and R. C. McPhedran,
“Highly conducting lamellar diffraction gratings,”
Opt. Acta, vol. 28, no. 8, pp. 1103–1106, 1981.
G. Tayeb and R. Petit, “On the numerical study of
deep conducting lamellar diffraction gratings,” Optica Acta, vol. 31, no. 12, pp. 1361-1365, 1984.
R. Petit and G. Tayeb, “Numerical study of the
symmetrical strip-grating-loaded slab,” J. Opt. Soc.
Am. A, vol. 7, no. 3, pp. 373-378, Mar. 1990.
S. E. Sandström, G. Tayeb, and R. Petit, “Lossy
multistep lamellar gratings in conical diffraction
mountings – an exact eigenfunction solution,” J. of
Electromagnetic Waves and Applications, vol. 7,
pp. 631–649, 1993.
P. Johnson and R. W. Christy, “Optical Constants
of the Noble Metals,” Phys. Rev. B, vol. 6, no. 12,
pp. 4370–4379, Dec. 1972.
M. Born and E. Wolf, Principles of Optics, Cambridge, 1964.