Cascading Optical Negative Index Metamaterials

作者

  • Alexander V. Kildishev Birck Nanotechnology Center, School of Electrical and Computer Engineering Purdue University, IN 47907 USA
  • Uday K. Chettiar Birck Nanotechnology Center, School of Electrical and Computer Engineering Purdue University, IN 47907 USA

关键词:

Cascading Optical Negative Index Metamaterials

摘要

We use a spatial harmonic analysis (SHA) method to homogenize optical metamaterials with a negative refractive index; the method provides a more general approach than other methods for estimating the effective index of materials arranged of cascaded elementary layers. The approach is validated for a single layer and a triple layer two dimensional metal grating.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

L. I. Mandel’shtam, “Group velocity in crystal lattice,” JETP, vol. 15, pp. 475, 1945.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε

and µ,” Soviet Physics Uspekhi, vol. 10, pp. 509–

, 1968.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, Apr. 2001.

J. B. Pendry, “Negative refraction makes a perfect

lens,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3966–

, Oct. 2000.

A. V. Kildishev, W. Cai, U. K. Chettiar, H. K.

Yuan, A. K. Sarychev, V. P. Drachev, and V. M.

Shalaev, “Negative refractive index in optics of

metal-dielectric composites,” J. of Opt. Soc. Am. B,

vol. 23, no. 3, pp. 423–433, Mar. 2006.

J. D. Vacchione and R. Mittra, “Cascading of Multiscreen Frequency Selective Surfaces,” in Frequency Selective Surface and Grid Array, T. K.

Wu, Ed. John Wiley & Sons, 1995.

C. B. Burkhardt, “Diffraction of a Plane Wave at a

Sinusoidally Stratified Dielectric Grating,” J. Opt.

Soc. Am., vol. 56, no. 11, pp. 1502–1509, Nov.

F. G. Kaspar, “Diffraction by thick, periodically

stratified gratings with complex dielectric constant”, J. Opt. Soc. Am., vol. 63, no. 1, pp. 37–45,

Jan. 1973.

K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,”

J. Opt. Soc. Am., vol. 68, no. 9, pp. 1206–1210,

Sept. 1978.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J.

Opt. Soc. Am., vol. 71, no. 7, pp. 811–818, July

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction – E-mode

ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

polarization and losses,” J. Opt. Soc. Am., vol. 73,

no. 4, pp. 451–455, Apr. 1983.

M. G. Moharam and T. K. Gaylord, “Threedimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am., vol. 73,

no. 9, pp. 1105–1112, Sept. 1983.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L.

Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta, vol. 28, no.

, pp. 413–428, 1981.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L.

Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta,

vol. 28, no. 8, pp. 1087–1102, 1981.

L. C. Botten, M. S. Craig, and R. C. McPhedran,

“Highly conducting lamellar diffraction gratings,”

Opt. Acta, vol. 28, no. 8, pp. 1103–1106, 1981.

G. Tayeb and R. Petit, “On the numerical study of

deep conducting lamellar diffraction gratings,” Optica Acta, vol. 31, no. 12, pp. 1361-1365, 1984.

R. Petit and G. Tayeb, “Numerical study of the

symmetrical strip-grating-loaded slab,” J. Opt. Soc.

Am. A, vol. 7, no. 3, pp. 373-378, Mar. 1990.

S. E. Sandström, G. Tayeb, and R. Petit, “Lossy

multistep lamellar gratings in conical diffraction

mountings – an exact eigenfunction solution,” J. of

Electromagnetic Waves and Applications, vol. 7,

pp. 631–649, 1993.

P. Johnson and R. W. Christy, “Optical Constants

of the Noble Metals,” Phys. Rev. B, vol. 6, no. 12,

pp. 4370–4379, Dec. 1972.

M. Born and E. Wolf, Principles of Optics, Cambridge, 1964.

##submission.downloads##

已出版

2022-06-18

栏目

General Submission