A Survey of Phased Arrays for Medical Applications
关键词:
A Survey of Phased Arrays for Medical Applications摘要
This paper presents a survey of phased arrays for a wide variety of medical applications. Medical imaging modalities including tomography, confocal imaging, thermography, and MRI are covered, as well as hyperthermia for treatment of cancer. Arrays include planar, cylindrical, and conformal configurations of many types of antennas including monopoles, dipoles, microstrips, horns, bowties, loops, etc.
##plugins.generic.usageStats.downloads##
参考
D. Colton and P. Monk, “A new approach to
detecting leukemia: Using computational
electromagnetics,” IEEE Trans. Comput. Sci.
Eng., vol.2, pp. 46–52, winter 1995.
P. M. Meaney, M. W. Fanning, D. Li, S. P.
Poplack, and K. D. Paulsen, “A clinical prototype
for active microwave imaging of the breast,”
IEEE Trans. Microwave Theory Tech., vol. 48,
pp. 1841-1853, Nov. 2000.
W. C. Chew and J. H. Lin, “A frequency-hopping
approach for microwave imaging of large
inhomogeneous bodies,” IEEE Microwave
Guided Wave Lett., vol. 5, pp. 439–441, Dec.
O. S. Haddadin and E. S. Ebbini, “Imaging
strongly scattering media using a multiple
frequency distorted Born iterative method,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol.
, pp. 1485–1496,Nov. 1998.
Q. Fang, P. M. Meaney, and K. D. Paulsen,
“Microwave image reconstruction of tissue
property dispersion characteristics utilizing
multiple-frequency information,” IEEE Trans.
Microwave Theory Tech., vol. 52, pp. 1866-1875,
Aug. 2004.
P. M. Meaney, K. D. Paulsen, A. Hartov, and R.
C. Crane, “An active microwave imaging system
for reconstruction of 2-D electrical property
distributions,” IEEE Trans. Biomed. Imag., vol.
, pp. 1017–1026, Oct. 1995.
K. D. Paulsen and P. M. Meaney, “Compensation
for nonactive array element effects in a
microwave imaging system: Part I—Forward
solution vs. measured data comparison,” IEEE
Trans. Med. Imag., vol. 18, pp. 496–507, June
P. M. Meaney, K. D. Paulsen, M. W. Fanning,
and A. Hartov, “Nonactive antenna compensation
for fixed-array microwave imaging: Part II—
Imaging results,” IEEE Trans. Med. Imag., vol.
, pp. 508-518, Jun. 1999.
P. M. Meaney, K. D. Paulsen, A. Hartov, and R.
K. Crane, “Microwave imaging for tissue
assessment: Initial evaluation in multitarget
tissue-equivalent phantoms,” IEEE Trans.
Biomed. Eng., vol. 43, pp. 878-890, Sept. 1996.
E. C. Fear, S. C. Hagness, P. M. Meaney, M.
Okieniewski, and M. Stuchly, “Enhancing breast
cancer detection using near field imaging,” IEEE
Microwave Magazine, pp. 48-56, March 2002.
S. C. Hagness, A. Taflove, and J. E. Bridges,
“Two-dimensional FDTD analysis of a pulsed
microwave confocal system for breast cancer
detection: Fixed-focus and antenna-array
sensors,” IEEE Trans. Biomed. Eng., vol. 45, pp.
–1479, Dec. 1998.
S. C. Hagness, A. Taflove, and J. E. Bridges,
“Three-dimensional FDTD analysis of a pulsed
microwave confocal system for breast cancer
detection: Design of an antenna-array element,”
IEEE Trans. Antennas Propagat., vol. 47, pp.
–791, May 1999.
X. Li and S. C. Hagness, “A confocal microwave
imaging algorithm for breast cancer detection,”
IEEE Microwave Wireless Comp. Lett., vol. 11,
pp. 130–132, Mar. 2001.
E. Fear and M. Stuchly, “Microwave system for
breast tumor detection,” IEEE Microwave
Guided Wave Lett., vol. 9, pp. 470–472, Nov.
FURSE: SURVEY OF PHASED ARRAYS FOR MEDICAL APPLICATIONS
E. C. Fear and M. A. Stuchly, “Microwave
detection of breast cancer,” IEEE Trans.
Microwave Theory Tech., vol. 48, pp. 1854–
, Nov. 2000.
X. Yun, E. C. Fear, and R. H. Johnston,
“Compact Antenna for Radar-Based Breast
Cancer Detection,” IEEE Trans. Antennas and
Propagation, vol. 53, no. 8, pp. 2374 -2380, Aug.
S. C. Hagness, A. Taflove, and J. E. Bridges,
“Wideband ultralow reverberation antenna for
biological sensing,” Electronic Lett., vol. 33, no.
, pp. 1594–1595, Sep. 1997.
M. A. Hernandez-Lopez, M. Pantoja, M.
Fernandez, S. Garcia, A. Bretones, R. Martin,
and R. Gomez, “Design of an ultra-broadband V
antenna for microwave detection of breast
tumors,” Microw. Opt. Tech. Lett., vol. 34, no. 3,
pp. 164–166, Aug. 2002.
E. C. Fear and M. A. Stuchly, “Microwave breast
tumor detection: Antenna design and
characterization,” IEEE Antennas Propag. Symp.
Dig., vol. 2, pp. 1076–1079, 2000.
X. Li, S. C. Hagness, M. K. Choi, and D. W. W.
Choi, “Numerical and experimental investigation
of an ultrawideband ridged pyramidal horn
antenna with curved launching plane for pulse
radiation,” IEEE Antennas Wireless Propag.
Lett., vol. 2, pp. 259–262, 2003.
X. Yun, E. C. Fear, and R. H. Johnston, “Radar-
based microwave imaging for breast cancer
detection: Tumor sensing with cross-polarized
reflections,” IEEE Antennas Propag. Society
Symp. Dig., vol. 3, pp. 2432–2435, 2004.
C. J. Shannon, E. C. Fear, and M. Okoniewski,
“Dielectric-filled slotline bowtie antenna for
breast cancer detection,” Electronics Letters, vol.
, no. 7, March 2005.
J. M. Sill and E. C. Fear, “Tissue sensing
adaptive radar for breast cancer detection: A
study of immersion liquid,” Electronics Letters,
vol. 41, no. 3, pp. 113–115, Feb. 2005.
J. M. Sill and E. C. Fear, “Tissue sensing
adaptive radar for breast cancer detection:
Preliminary experimental results,” IEEE MTT-S
Int. Microwave Symp. Dig., Long Beach, CA,
June 2005.
J. M. Sill and E. C. Fear, “Tissue Sensing
Adaptive Radar for Breast Cancer Detection—
Experimental Investigation of Simple Tumor
Models,” IEEE Trans. Microwave Theory Tech.,
vol. 53, no. 11, pp. 3312-3319, Nov. 2005.
S. Y. Semenov, A. E. Bulyshev, A. E. Souvorov,
R. H. Svenson, Y. E. Sizov, V. Y. Borisov, V. G.
Posukh, I. M. Kozlov, A. G. Nazarov, and G. P.
Tatsis, “Microwave tomography: Theoretical and
experimental investigation of the iteration
reconstruction algorithm,” IEEE Trans. Micr.
Theory Tech., vol. 46, pp. 133–141, Feb. 1998.
S. Y. Semenov, R. H. Svenson, A. E. Bulyshev,
A. E. Souvorov, A.G. Nazarov, Y. E. Sizov, V.
G. Posukh, and A. Pavlovsky, “Three-
dimensional microwave tomography: Initial
experimental imaging of animals,” IEEE Trans.
Biomed. Eng., vol. 49, pp. 55–63, Jan. 2002.
C. Gabriel, S. Gabriel, and E. Corthout, “The
dielectric properties of biological tissues: I.
Literature survey,” Phys. Med. Biol., vol. 41, pp.
-2249, 1996.
S. Gabriel, R. W. Lau, and C. Gabriel, “The
dielectric properties of biological tissues: II.
Measurements on the frequency range 10 Hz to
GHz,” Phys. Med. Biol., vol. 41, pp. 2251-
, 1996.
S. Gabriel, R. W. Lau, and C. Gabriel. “The
dielectric properties of biological tissues: III.
Parametric models for the dielectric spectrum of
tissues,” Phys. Med. Biol., vol. 41, pp. 2271-
, 1996.
K. R. Foster and H. P. Schwan, “Dielectric
properties of tissues and biological materials: A
critical review,” Crit. Rev. Biomed. Eng., vol. 17,
pp. 25-104, 1989.
S. S. Chaudhary, R. K. Mishra, A. Swarup, and J.
M. Thomas, “Dielectric properties of normal and
malignant human breast tissues at radiowave and
microwave frequencies,” Indian J. Biochem.
Biophys., vol. 21, pp. 76-79, 1984.
A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A.
Swarup, “Dielectric properties of breast
carcinoma and the surrounding tissues,” IEEE
Trans. Biomed. Eng., vol. 35, pp. 257-263, Apr.
W. T. Joines, Y. Z. Dhenxing, and R. L. Jirtle.
“The measured electrical properties of normal
and malignant human tissues from 50 to 900
MHz,” Med. Phys., vol. 21, pp. 547-550, 1994.
A. M. Campbell and D. V. Land, “Dielectric
properties of female human breast tissue
measured in vitro at 3.2 GHz,” Phys. Med. Biol.,
vol. 37, pp. 193-210, 1992.
K. L. Carr, “Microwave radiometry: Its
importance to the detection of cancer,” IEEE
Trans. Microwave Theory Tech., vol. 37, no. 12,
pp. 1862-1869, Dec. 1989.
K. L. Carr, “Radiometric sensing,” IEEE
Potentials, pp. 21-25, April/May 1997.
L. Dubois, J. – P. Sozanski, V. Tessier, J. –C.
Camart, J. –J. Fabre, J. Pribetich, and M. Chiv, “
Temperature Control and Thermal Dosimetry by
Microwave Radiometry in Hyperthermia,” IEEE
ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006
Trans. Microwave Theory Tech., vol. 44, no. 10,
pp. 1755-1761, Oct. 1996.
S. M. Fraser, D. V. Land, and R. D. Sturrock,
“Microwave Thermography - an Index of
Inflammatory Disease,” Br. J. Rheumatology,
vol. 26, pp. 37-39, 1987.
B. Bocquet, J. C. Van de Velde, A. Mamouni,
and Y. Leroy, “Microwave radiometric imaging
at 3 GHz for the exploration of breast tumours,”
IEEE Trans. Microwave Theory Tech., vol. 38,
pp. 791-793, 1990.
J. Robert, J. Edrich, P. Thouvenot, M. Gautherie,
and J. M. Escanye, “Millimeter wave
thermography: Preliminary clinical finding on
head and neck diseases,” J. Microwave Power,
vol. 14, 1979.
K. L. Carr, A. M. ElMahdi, and J. Schaeffer,
“Dual mode microwave system to enhance early
detection of cancer,” IEEE Trans. Microwave
Theory Tech., vol. 29, pp. 256-260, 1980.
E. A. Cheever, J. B. Leonard, and K. R. Foster,
“Depth of penetration of fields from rectangular
apertures into lossy media,” IEEE Trans.
Microwave Theory Tech., vol. 35, pp. 865-867,
J. Audet, J. C. Bolomey, C. Pichot, D. D.
n’Guyen, M. Robillard, M. Chive, and Y. Leroy,
“Electrical characteristics of waveguide
applicators for medical applications,” J.
Microwave Power, vol. 15, pp. 177-186, 1980.
A. W. Guy, “Electromagnetic fields and relative
heating patterns due to a rectangular aperture
source in direct contact with bilayered biological
tissue,” IEEE Trans. Microwave Theory Tech.,
vol. 29, pp. 214-223, 1971.
D. V. Land, “Medical microwave radiometry and
its clinical applications,” IEE Colloquium
Application of Microwaves in Medicine, pp. 2/1 -
/5, 28 Feb 1995.
B. Enander and G. Larson, “Microwave
radiometry measurements of the temperature
inside a body,” Electronic Letters, vol. 10, pp.
, 1974.
J. Edrich and P. C. Hardee, “Thermography at
millimeter wavelengths,” Proc. IEEE, vol. 62,
pp. 1391-1392, 1974.
E. A. Cheever and K. R. Foster, “Microwave
radiometry in living tissue: What does it
measure?” IEEE Trans. Biomedical Engineering,
vol. 39, no .6, pp. 563-568, June 1992.
B. Bocquet, J. C. van de Velde, A. Mamouni, Y.
Leroy, G. Giauz, J. Delannoy, and D. Delvalee,
“Microwave Radiometric Imaging at 3 GHz for
the Exploration of Breast Tumors,” IEEE Trans.
Microwave Theory Tech., vol. 38, no.6, pp. 791-
, June 1990.
L. Enel, Y. Leroy, J. C. Van de Velde, and A.
Mamouni, “Improved recognition of thermal
structures by microwave radiometry,” Electronics
Letters, vol. 20, pp. 293-294, 1984.
Y. Leroy, A. Mamouni, J. C. Van de Velde, B.
Bocquet, and B. Dujardin, “Microwave
radiometry for non invasive thermometry,”
Automedica (Special Issue on Noninvasive
Thermometry), vol. 8, pp. 181-201, 1987.
J. R. Hadley, B. E. Chapman, J. A. Roberts, D. C.
Chapman, K. C. Goodrich, H. R. Buswell, A. L.
Alexander, J. S. Tsuruda, and D. L. Parker, “A
Three-Coil Comparison for MR Angiography,”
Journal of Magnetic Resonance Imaging, 11 pp.
–468, 2000.
C. E. Hayes, W. A. Edelstein, and J. F. Schenck,
et al., “An efficient, highly homogeneous
radiofrequency coil for whole-body NMR
imaging at 1.5 T,” J. Magn. Reson. Imaging, vol.
, pp. 622–628, 1985.
M. C. Leifer, “Theory of the quadrature elliptic
birdcage coil,” Magn. Reson. Med., vol. 38 pp.
–732, 1997.
S. Li, C. M. Collins, and B. J. Dardzinski, et al.,
“A method to create an optimum current
distribution and homogeneous B1 field for
elliptical birdcage coils,” Magn. Reson. Med.,
vol. 37, pp. 600–608,1997.
J. R. Fitzsimmons, J. C. Scott, and D. M.
Peterson, et al., “Integrated RF coil with
stabilization for FMRI human cortex,” Magn.
Reson. Med., vol. 38, pp. 15–18, 1997.
L. E. Hendrix, J. A. Strandt, and D. L. Daniels, et
al., “Three-dimensional time-of-flight MR
angiography with a surface coil: evaluation in 12
subjects,” American Journal Radiology, vol. 159,
pp. 103–106, 1992.
P. B. Roemer, W. A. Edelstein, C. E. Hayes,
S.P.Souza, and O.M.Mueller, “The NMR phased
array, ” Magn. Reson. Med., 16(2), pp. 192-225,
C. E. Hayes, N. Hattes, and P. B. Roemer,
“Volume imaging with MR phased arrays,”
Magn. Reson. Med., vol. 18, no. 2, pp. 309-
,1991.
C. E. Hayes and P. B. Roemer, “Noise
correlations in data simultaneously acquired from
multiple surface coil arrays,” Magn. Reson. Med.
, vol. 16, no. 2, pp. 181-191, 1991.
S. M. Wright, R. L. Magin, and J. R. Kelton,
“Arrays of mutually coupled receiver coils:
theory and application,” Magn. Reson. Med., vol.
, no. 1, pp. 252-268, 1991.
S. M. Wright and L. L. Wald, “Theory and
application of array coils in MR spectroscopy,”
NMR Biomed., vol. 10, no. 8, pp. 394-410, 1997.
FURSE: SURVEY OF PHASED ARRAYS FOR MEDICAL APPLICATIONS
G. R. Duensing, H. R. Brooker, and J. R.
Fitzsimmons, “Maximizing signal-to-noise ratio
in the presence of coil coupling,” Magn. Reson.
B, vol. 111, no. 3, pp. 230-235, 1996.
D. K. Sodickson and W. J. Manning,
“Simultaneous acquisition of spatial harmonics
(SMASH): ultra-fast imaging with
radiofrequency coil arrays,” Magn. Reson. Med.,
vol. 38, pp. 591-603, 1997.
K. P. Pruessmann, M. Weiger, M. B.
Scheidegger, and P. Boesiger, “SENSE:
Sensitivity encoding for fast MRI,” Magn. Reson.
Med., vol. 42, pp. 952-962, 1999.
Y. Zhu, “Parallel excitation with an array of
transmit coils,” Magn. Reson. Med., vol. 51, no.
, pp. 775-784, 2004.
K. Y. Kojima, J. Szumowski, and R. C. Sheley, et
al., “Lower extremities: MRangiography with a
unilateral telescopic phased-array coil,”
Radiology, 196, pp. 871–875, 1995.
J. W. Monroe, P. Schmalbrock, and D. G. Spigos,
“Phased array coils for upper extremity MRA,”
Magn. Reson. Med., vol. 33, pp. 224–229, 1995.
C. E. Hayes, C. M. Mathis, and C. Yuan,
“Surface coil phased arrays for high-resolution
imaging of the carotid arteries,” Magn. Reson.
Imaging, vol. 1, pp. 109–112, 1996.
C. Yuan, J. W. Murakami, and C. E. Hayes, et al,
“Phased-array magnetic resonance imaging of the
carotid artery bifurcation: preliminary results in
healthy volunteers and a patient with
atheroscleroticdisease,” Magn. Reson. Imaging,
vol. 5, pp. 561–565 1995.
S. H. Faro, S. Vinitski, and H. V. Ortega, et al,
“Carotid magnetic resonance angiography:
improved image quality with dual 3-inch surface
coils,” Neuroradiology, vol. 38, pp. 403–408,
H. A. Stark and E. M. Haacke, “Helmet and
cylindrical shaped CP array coils for brain
imaging: a comparison of signal-to-noise
characteristics,” Proceedings of the International
Society for Magnetic Resonance in Medicine, pp.
, 1996.
J. R. Porter, S. M. Wright, and A. Reykowski, “A
-element phased-array head coil,” Magn.
Reson. Med., vol. 40, pp. 272–279, 1998.
T. Wu and R. King, “The cylindrical antenna
with nonreflecting resistive loading,” IEEE
Trans. Antennas Propag., vol. AP-13, no. 3, pp.
–373, May 1965.
T. Wu and R. King, “Corrections to ‘The
cylindrical antenna with nonreflecting resistive
loading’,” IEEE Trans. Antennas Propag., vol.
AP-13, no. 11, p.998, Nov. 1965.
E. C. Fear, J. Sill, and M. A. Stuchly,
“Experimental Feasibility Study of Confocal
Microwave Imaging for Breast Tumor Detection
,” IEEE Trans. Microwave Theory Tech., vol. 51,
no. 3, pp. 887-892, March 2003.
Special Issue of IEEE Trans. Microwave Theory
Tech., MTT-34, 1986.
C. H. Durney and M. F. Iskander, Antenna
Handbook. Eds. Y.T. Lo & S.W. Lee, 1993.
P. K. Sneed and T. L. Phillips, “Combining
hyperthermia and radiation: How beneficial?,”
Oncology, vol. 5, pp. 99-108, 1991.
C. C. Vernon, J. W. Hand, and S. B. Field, et al.,
“Radiotherapy with or without hyperthermia in
the treatment of superficial localized breast
cancer: Results from five randomized controlled
trials,” Int. J. Radiat. Oncol. Biol. Phys., vol. 35,
pp. 731-44, 1996.
F. Monteccia, “Microstrip antenna design for
hyperthermia treatment of superficial tumors,”
IEEE Trans. BME, vol. 39, no. 6, pp. 580-588,
June 1992,
J. Vba, C. Franconi, F. Montecchia, and I.
Vannucci, “Evanescent-Mode Applicators
(EMA) for superficial and subcutaneous
hyperthermia,” IEEE Trans. Biomed. Eng., vol.
, no.5, pp. 397-407, May 1993.
M. V. Prior, M. L. D. Lumori, J. W. H, G.
Lamaitre, C. J. Schneider, and J. D. P. van Dijk,
“The Use of a Current Sheet Applicator Array for
Superficial Hyperthermia: Incoherent Versus
Coherent Operation,” IEEE Trans. Biomed. Eng.,
vol. 43, no. 7, pp. 694-698, July 1995.
P. R. Stauffer, M. Leoncini, and V. Manfrini, et
al., “Dual concentric conductor radiator for
microwave hyperthermia with improved field
uniformity to periphery of aperture,” IEICE
Trans. on Communicat., vol. E78-B, pp. 826-35,
P. F. Maccarini, H. Rolfsnes, D. Neuman and P.
Stauffer, “Optimization of a Dual Concentric
Conductor Antenna for Superficial Hyperthermia
Applications,” Proceedings of the 26th Annual
International conference of the IEEE EMBS, San
Francisco, CA, USA , September 1-5, 2004.
S. Jacobsen, P. R. Stauffer, and D. G. Neuman,
“Dual-mode antenna design for microwave
heating and noninvasive thermometry of
superficial tissue disease,” IEEE Trans. Biomed.
Eng., vol. 47, 2000.
P. F. Turner, “Interstitial Equal-Phased Arrays for EM
Hyperthermia,” IEEE Trans. Microwave Theory and
Tech., vol. 34, no.5, pp. 572 - 578, May 1986.
C. M. Furse and M. F. Iskander, “Three-
dimensional Electromagnetic Power Deposition
in Tumors using Interstitial Antenna Arrays,”
ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006
IEEE Trans. on Biomedical Engineering, vol. 36,
pp. 977-986, Oct. 1989.
P. Cherry and M. F. Iskander, “FDTD analysis of
power deposition patterns of an array of
interstitial antennas for use in microwave
hyperthermia,” IEEE Trans. Microwave Theory
and Tech, vol. 40, no. 8, pp. 1692-1700, Aug
R. D. Nevels, G. D. Arndt, G. W. Raffoul, J. R.
Carl, and A. Pacifico, “Microwave catheter
design,” IEEE Trans. on Biomedical
Engineering, vol. 45, pp.885–890, July 1998.
C. Manry, S. L. Broschat, C.-K. Chou, and J. A.
McDougall, “An eccentrically coated asymmetric
antenna applicator for intracavity hyperthermia
treatment of cancer,” IEEE Trans. on Biomedical
Engineering, vol. 39, no. 9, pp. 935-942, Sept.
J. C. Camart, D. Despretz, M. Chive, and J.
Pribetich, “Modeling of various kinds of
applicators used for microwave hyperthermia
based on the FDTD method,” IEEE Trans.
Microwave Theory and Tech., vol. 44, no. 10, pp.
-1818, Oct. 1996.
P. F. Turner, “Hyperthermia and Inhomogeneous
Tissue Effects Using an Annular Phased Array,”
IEEE Trans. Microwave Theory and Tech., vol.
, no. 8, pp. 874 - 875, Aug. 1984.
P. Stauffer, J. Schlorff, R. Taschereau, T. Juang,
D. Neuman, P. Maccarini, J. Pouliot and J. Hsu,
“Combination Applicator for Simultaneous Heat
and Radiation,” Proceedings of the 26th Annual
International Conference of the IEEE EMBS, San
Francisco, CA, September 1-5, 2004.
Y. Kotsuka, E. Hankui, and Y. Shigematsu,
“Development of Ferrite Core Applicator System
for Deep-Induction Hyperthermia,” IEEE Trans.
Microwave Theory and Tech., vol. 44, no. 10, pp.
-1810, Oct. 1996.
D. M. Sullivan, “Three-dimensional computer
simulation in deep regional hyperthermia using
the FDTD Method,” IEEE Trans. Microwave
Theory and Tech., vol. 38, no. 2, pp. 201-211,
Feb. 1990.
P. F. Turner, “Sigma 60–24 Prototype Test
Results,” BSD Medical Corporation, Salt Lake
City, UT, Internal Rep., 1992.
J. Nadobny, H. Fähling, M. Hagmann, P. Turner,
W. Wlodarczyk, J.Gellermann, P. Deuflhard, and
P. Wust, “Experimental and numerical
investigations of feed-point parameters in a 3-D
hyperthermia applicator using different models of
feed networks,” IEEE Trans. Biomed. Eng., vol.
, no. 11, pp. 1348–1359, Nov. 2002.
J. Nadobny, W. Wlodarczyk, L. Westhoff, J.
Gellermann, R. Felix, and P. Wust, “A Clinical
Water-Coated Antenna Applicator for MR-
Controlled Deep-Body Hyperthermia: A
Comparison of Calculated and Measured 3-D
Temperature Data Sets,” IEEE Trans. on
Biomedical Engineering, vol. 52, no. 3, pp. 505-
, March 2005.
K. S. Nikita and N. K. Uzunoglu, “Coupling
Phenomena in Concentric Multi-Applicator
Phased Array Hyperthermia Systems,” IEEE
Trans. Microwave Theory and Tech., vol. 44, no.
, pp. 65-74, Jan 1996.
F. Bardati, A. Borrani, A. Gerardino, and G. A.
Lovisolo, “SAR Optimization in a Phased Array
Radiofrequency Hyperthermia System,” IEEE
Trans. on Biomedical Engineering, vol. 42, no.
, pp. 1201-1207, Dec. 1995.
R. W. P. King, G. J. Fikioris, and R. B. Mack,
Cylindrical Antennas and Arrays, Cambirdge,
U.K.: Cambridge Univ. Press, 2002.
S. Ebihara and T. Yamamoto, “Resonance
analysis of a circular dipole array antenna in
cylindrically layered media for directional
borehole radar,” IEEE Trans. Geosci. Remote
Sensing, vol. 44, no.1, pp. 22-31, Jan. 2006.
K. Holliger and T. Bergmann, “Numerical
modeling of borehole geo-radar data,”
Geophysics, vol. 67, no. 4, pp. 1249-1257,
July/Aug. 2002.
J. R. Hadley, “Design of Radio Frequency Coil
Arrays for Optimal Signal to Noise Ratio for
Magnetic Resonance Angiography,” PhD
Dissertation, University of Utah Electrical and
Computer Engineering Department, 2005.
H. Massoudi, C. H. Durney, and M. F. Iskander,
“Limitations of the cubical block model of man
in calculating SAR distribution,” IEEE Trans.
Microwave Theory and Tech., vol. 32, pp. 746-
, 1984.
C. T. Tsai, H. Massoudi, C. H. Durney, and M. F.
Iskander, “A procedure for calculating fields
inside arbitrarily-shaped, inhomogeneous
dielectric bodies using linear basis functions with
the moment method,” IEEE Trans. Microwave
Theory and Tech., vol. 34, pp. 1131-1139, 1986.
O. H. Schaubert, D. R. Wilton, and A. W.
Glisson, “A tetrahedral modeling method of
electromagnetic scattering by arbitrarily shaped
inhomogeneous objects,” IEEE. Trans. Antennas
and Propagation, vol. 32, pp. 75-82, 1984.
B. M. Green and M. A. Jensen, “Diversity
performance of dual-antenna handsets near
operator tissue,” IEEE. Trans. Antennas and
Propagation, vol. 48, no. 7, pp. 1017-1024, July
O. Gandhi, G. Lazzi, and C. Furse,
“Electromagnetic Absorption in the Human Head
FURSE: SURVEY OF PHASED ARRAYS FOR MEDICAL APPLICATIONS
and Neck for Mobile Telephones at 835 and 1900
MHz,” IEEE Trans. on Microwave Theory and
Tech., vol. 44, pp. 1884 -1897, 1996.
P. Soontornpipit, C. M. Furse, and Y. C. Chung ,
“Design of Implantable Microstrip Antenna for
Communication with Medical Implants,” Special
Issue of IEEE Trans. on Microwave Theory and
Tech. on Medical Applications and Biological
Effects of RF/Microwaves , Sept. 2004.
C. E. Reuter, A. Taflove, V. Sathiaseelan, M.
Piket-May, and B. B. Mittral, “Unexpected
physical phenomena indicated by FDTD
modeling of the Sigma-60 deep hyperthermia
applicator,” IEEE Trans. Microwave Theory and
Tech., vol. 46, no.4, pp. 313-319, April 1998.
C.-Q. Wang and O. P. Gandhi, “Numerical
simulation of annular phased arrays for
anatomically based models using the FDTD
method,” IEEE Trans. Microwave Theory and
Tech., vol. 37, no.1, pp. 118-126, Jan, 1989.
D. Sullivan, D. Buechler, and F. A. Gibbs,
“Comparison of measured and simulated data in
an annular phased array using an inhomogeneous
phantom,” IEEE Trans. Microwave Theory and
Tech., vol. 40, no.3, pp. 600-604, Mar. 1992.
C. M. Furse, J.-Y. Chen, and O. P. Gandhi, “Use
of the Frequency-Dependent Finite-Difference
Time-Domain Method for Induced Current and
SAR Calculations for a Heterogeneous Model of
the Human Body,” IEEE Trans. on
Electromagnetic Compatibility, pp.128-133, May
C. Furse and O. P. Gandhi, “Calculation of
Electric Fields and Currents Induced in a
Millimeter-Resolution Human Model at 60 Hz
Using the FDTD Method,” Bioelectromagnetics,
(5), pp.293-299, 1998.
C. M. Furse and O. P. Gandhi, “A Memory
Efficient Method of Computing Specific
Absorption Rate in CW FDTD Simulations,”
IEEE Transactions on Biomedical Engineering,
vol. 43, no. 5, pp. 558-560, May 1996.
C. H. Durney, C. C. Johnson, P. W. Barber, H.
Massoudi, M. F. Iskander, J. L. Lords, D. K.
Ryser, S. J. Allen, and J. C. Mitchell,
Radiofrequency Radiation Dosimetry Handbook,
nd ed., USAF School of Medicine, Brooks AFB,
TX, 1978.
O. P. Gandhi, , Y. G. Gu, J. Y. Chen, and H. I.
Bassen, “Specific absorption rates and induced
current distributions in an anatomically based
human model for plane-wave exposures,” Health
Physics, 63(3), pp. 281-290, 1992.
O. P. Gandhi and C. M. Furse, “Millimeter-
resolution MRI-based models of the human body
for electromagnetic dosimetry from ELF to
microwave frequencies,” Voxel Phantom
Development: Proceedings of an International
Workshop held at the National Radiological
Protection Board, Chilton, UK, July 6-7, 1995,
Peter J. Dimbylow, editor.
P. J. Dimbylow, “The development of realistic
voxel phantoms for electromagnetic field
dosimetry,” Voxel Phantom Development:
Proceedings of an International Workshop held
at the National Radiological Protection Board,
Chilton, UK, July 6-7, 1995, Peter J. Dimbylow,
editor.
P. Olley and P. S. Excell, “Classification of high
resolution voxel image of a human head,” Voxel
Phantom Development: Proceedings of an
International Workshop held at the National
Radiological Protection Board, Chilton, UK,
July 6-7, 1995, Peter J. Dimbylow, editor.
M. A. Stuchly, K. Caputa, A. van Wensen, and
A. El-Sayed, “Models of human and animal
bodies in electromagnetics,” Voxel Phantom
Development: Proceedings of an International
Workshop held at the National Radiological
Protection Board, Chilton, UK, July 6-7, 1995,
Peter J. Dimbylow, editor.
National Library of Medicine, Visible Man
Project, MRI scans, CT scans, and photographs
available on CD through Research Systems, Inc.,
Wilderness Place, Boulder, CO 80301.
C. Gabriel, “Compilation of the dielectric
properties of body tissues at RF and microwave
frequencies,” Final Report AL/OE-TR-1996-0037
submitted to Occupational and Environmental
Health Directorate, RFR Division, 2503
Gillingham Dr., Brooks AFB, TX, June 1996.
M. A. Stuchly and S. S. Stuchly, “Dielectric
properties of biological substances – tabulated,”
J. Microwave Power, 15 (1), pp. 19-26, 1980.
S. Rush, J. A. Abildskov, and R. McFee,
“Resistivity of body tissues at low frequencies,”
Circ. Research, vol. XII, pp. 40-50, 1963.
L. A. Geddes and L. E. Baker, “The specific
resistance of biological material – a compendium
of data for the biomedical engineer and
physiologist,” Med. & Biol. Engng., vol. 5, pp.
-293, Pergamon Press., 1967.
University of Utah Dielectric Database OnLine
http://www.ece.utah.edu/dielectric/
D. M. Pozar, “Microstrip antennas,” Proc. IEEE,
vol. 80, pp. 79-91, Jan 1992.
A. Cucini, M. Albani, and S. Maci, “Truncated
floquet wave full-wave analysis of large phased
arrays of open-eneded waveguides with
nonuniform amplitude excitation,” IEEE Trans.
Antennas and Propagation, vol. 51, no.6, pp.
-1394, June 2003.
ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006
G. Turner and C. Christodoulou, “FDTD analysis
of phased array antennas,” IEEE Trans. Antennas
and Propagation, vol. 47, no. 4, pp. 661-667,
April 1999.
J. Ren, O. P. Gandhi, L. R. Walker, J. Fraschilla,
and C. R. Boerman, “Floquet-based FDTD
analysis of two-dimensional phased array
antennas,” IEEE Microwave and Guided Wave
Letters, vol. 4, no.4, pp. 109-111, April 1994.
C. Railton and G. S. Hilton, “The analysis of
medium-sized arrays of complex elements using
a combination of FDTD and reaction matching,”
IEEE Trans. Antennas and Propagation, vol. 47,
no. 4, pp. 707-714, April 1999.
J. Gomez-Tagle, P. Wahid, M. Chriyssomallis,
and C. Christodoulou, “FDTD analysis of finite-
sized phased array microstrip antennas,” IEEE
Trans. Antennas and Propagation, vol. 51, no. 8,
pp. 2057-2062, Aug. 2003.
H. Holter and H. Steyskal, “On the size
requirement for finite phased-array models,”
IEEE Trans. Antennas and Propagation, vol. 50,
no. 6, pp. 836-840, June 2002.
T. Su, N.-T. Huang, Y. Lio, W. Yu, and R.
Mittra, “Investigation of instability characteristics
arising in the FDTD simulation of electrically
large antenna arrays,” IEEE Antennas and
Propagation Society International Symposium,
vol. 1, pp. 1014-1017, June 2004