A Survey of Phased Arrays for Medical Applications

作者

  • Cynthia Furse Electrical and Computer Engineering, University of Utah, 50 S Campus Drive 3280 MEB Salt Lake City, Utah 84112

关键词:

A Survey of Phased Arrays for Medical Applications

摘要

This paper presents a survey of phased arrays for a wide variety of medical applications. Medical imaging modalities including tomography, confocal imaging, thermography, and MRI are covered, as well as hyperthermia for treatment of cancer. Arrays include planar, cylindrical, and conformal configurations of many types of antennas including monopoles, dipoles, microstrips, horns, bowties, loops, etc.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

D. Colton and P. Monk, “A new approach to

detecting leukemia: Using computational

electromagnetics,” IEEE Trans. Comput. Sci.

Eng., vol.2, pp. 46–52, winter 1995.

P. M. Meaney, M. W. Fanning, D. Li, S. P.

Poplack, and K. D. Paulsen, “A clinical prototype

for active microwave imaging of the breast,”

IEEE Trans. Microwave Theory Tech., vol. 48,

pp. 1841-1853, Nov. 2000.

W. C. Chew and J. H. Lin, “A frequency-hopping

approach for microwave imaging of large

inhomogeneous bodies,” IEEE Microwave

Guided Wave Lett., vol. 5, pp. 439–441, Dec.

O. S. Haddadin and E. S. Ebbini, “Imaging

strongly scattering media using a multiple

frequency distorted Born iterative method,” IEEE

Trans. Ultrason., Ferroelect., Freq. Contr., vol.

, pp. 1485–1496,Nov. 1998.

Q. Fang, P. M. Meaney, and K. D. Paulsen,

“Microwave image reconstruction of tissue

property dispersion characteristics utilizing

multiple-frequency information,” IEEE Trans.

Microwave Theory Tech., vol. 52, pp. 1866-1875,

Aug. 2004.

P. M. Meaney, K. D. Paulsen, A. Hartov, and R.

C. Crane, “An active microwave imaging system

for reconstruction of 2-D electrical property

distributions,” IEEE Trans. Biomed. Imag., vol.

, pp. 1017–1026, Oct. 1995.

K. D. Paulsen and P. M. Meaney, “Compensation

for nonactive array element effects in a

microwave imaging system: Part I—Forward

solution vs. measured data comparison,” IEEE

Trans. Med. Imag., vol. 18, pp. 496–507, June

P. M. Meaney, K. D. Paulsen, M. W. Fanning,

and A. Hartov, “Nonactive antenna compensation

for fixed-array microwave imaging: Part II—

Imaging results,” IEEE Trans. Med. Imag., vol.

, pp. 508-518, Jun. 1999.

P. M. Meaney, K. D. Paulsen, A. Hartov, and R.

K. Crane, “Microwave imaging for tissue

assessment: Initial evaluation in multitarget

tissue-equivalent phantoms,” IEEE Trans.

Biomed. Eng., vol. 43, pp. 878-890, Sept. 1996.

E. C. Fear, S. C. Hagness, P. M. Meaney, M.

Okieniewski, and M. Stuchly, “Enhancing breast

cancer detection using near field imaging,” IEEE

Microwave Magazine, pp. 48-56, March 2002.

S. C. Hagness, A. Taflove, and J. E. Bridges,

“Two-dimensional FDTD analysis of a pulsed

microwave confocal system for breast cancer

detection: Fixed-focus and antenna-array

sensors,” IEEE Trans. Biomed. Eng., vol. 45, pp.

–1479, Dec. 1998.

S. C. Hagness, A. Taflove, and J. E. Bridges,

“Three-dimensional FDTD analysis of a pulsed

microwave confocal system for breast cancer

detection: Design of an antenna-array element,”

IEEE Trans. Antennas Propagat., vol. 47, pp.

–791, May 1999.

X. Li and S. C. Hagness, “A confocal microwave

imaging algorithm for breast cancer detection,”

IEEE Microwave Wireless Comp. Lett., vol. 11,

pp. 130–132, Mar. 2001.

E. Fear and M. Stuchly, “Microwave system for

breast tumor detection,” IEEE Microwave

Guided Wave Lett., vol. 9, pp. 470–472, Nov.

FURSE: SURVEY OF PHASED ARRAYS FOR MEDICAL APPLICATIONS

E. C. Fear and M. A. Stuchly, “Microwave

detection of breast cancer,” IEEE Trans.

Microwave Theory Tech., vol. 48, pp. 1854–

, Nov. 2000.

X. Yun, E. C. Fear, and R. H. Johnston,

“Compact Antenna for Radar-Based Breast

Cancer Detection,” IEEE Trans. Antennas and

Propagation, vol. 53, no. 8, pp. 2374 -2380, Aug.

S. C. Hagness, A. Taflove, and J. E. Bridges,

“Wideband ultralow reverberation antenna for

biological sensing,” Electronic Lett., vol. 33, no.

, pp. 1594–1595, Sep. 1997.

M. A. Hernandez-Lopez, M. Pantoja, M.

Fernandez, S. Garcia, A. Bretones, R. Martin,

and R. Gomez, “Design of an ultra-broadband V

antenna for microwave detection of breast

tumors,” Microw. Opt. Tech. Lett., vol. 34, no. 3,

pp. 164–166, Aug. 2002.

E. C. Fear and M. A. Stuchly, “Microwave breast

tumor detection: Antenna design and

characterization,” IEEE Antennas Propag. Symp.

Dig., vol. 2, pp. 1076–1079, 2000.

X. Li, S. C. Hagness, M. K. Choi, and D. W. W.

Choi, “Numerical and experimental investigation

of an ultrawideband ridged pyramidal horn

antenna with curved launching plane for pulse

radiation,” IEEE Antennas Wireless Propag.

Lett., vol. 2, pp. 259–262, 2003.

X. Yun, E. C. Fear, and R. H. Johnston, “Radar-

based microwave imaging for breast cancer

detection: Tumor sensing with cross-polarized

reflections,” IEEE Antennas Propag. Society

Symp. Dig., vol. 3, pp. 2432–2435, 2004.

C. J. Shannon, E. C. Fear, and M. Okoniewski,

“Dielectric-filled slotline bowtie antenna for

breast cancer detection,” Electronics Letters, vol.

, no. 7, March 2005.

J. M. Sill and E. C. Fear, “Tissue sensing

adaptive radar for breast cancer detection: A

study of immersion liquid,” Electronics Letters,

vol. 41, no. 3, pp. 113–115, Feb. 2005.

J. M. Sill and E. C. Fear, “Tissue sensing

adaptive radar for breast cancer detection:

Preliminary experimental results,” IEEE MTT-S

Int. Microwave Symp. Dig., Long Beach, CA,

June 2005.

J. M. Sill and E. C. Fear, “Tissue Sensing

Adaptive Radar for Breast Cancer Detection—

Experimental Investigation of Simple Tumor

Models,” IEEE Trans. Microwave Theory Tech.,

vol. 53, no. 11, pp. 3312-3319, Nov. 2005.

S. Y. Semenov, A. E. Bulyshev, A. E. Souvorov,

R. H. Svenson, Y. E. Sizov, V. Y. Borisov, V. G.

Posukh, I. M. Kozlov, A. G. Nazarov, and G. P.

Tatsis, “Microwave tomography: Theoretical and

experimental investigation of the iteration

reconstruction algorithm,” IEEE Trans. Micr.

Theory Tech., vol. 46, pp. 133–141, Feb. 1998.

S. Y. Semenov, R. H. Svenson, A. E. Bulyshev,

A. E. Souvorov, A.G. Nazarov, Y. E. Sizov, V.

G. Posukh, and A. Pavlovsky, “Three-

dimensional microwave tomography: Initial

experimental imaging of animals,” IEEE Trans.

Biomed. Eng., vol. 49, pp. 55–63, Jan. 2002.

C. Gabriel, S. Gabriel, and E. Corthout, “The

dielectric properties of biological tissues: I.

Literature survey,” Phys. Med. Biol., vol. 41, pp.

-2249, 1996.

S. Gabriel, R. W. Lau, and C. Gabriel, “The

dielectric properties of biological tissues: II.

Measurements on the frequency range 10 Hz to

GHz,” Phys. Med. Biol., vol. 41, pp. 2251-

, 1996.

S. Gabriel, R. W. Lau, and C. Gabriel. “The

dielectric properties of biological tissues: III.

Parametric models for the dielectric spectrum of

tissues,” Phys. Med. Biol., vol. 41, pp. 2271-

, 1996.

K. R. Foster and H. P. Schwan, “Dielectric

properties of tissues and biological materials: A

critical review,” Crit. Rev. Biomed. Eng., vol. 17,

pp. 25-104, 1989.

S. S. Chaudhary, R. K. Mishra, A. Swarup, and J.

M. Thomas, “Dielectric properties of normal and

malignant human breast tissues at radiowave and

microwave frequencies,” Indian J. Biochem.

Biophys., vol. 21, pp. 76-79, 1984.

A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A.

Swarup, “Dielectric properties of breast

carcinoma and the surrounding tissues,” IEEE

Trans. Biomed. Eng., vol. 35, pp. 257-263, Apr.

W. T. Joines, Y. Z. Dhenxing, and R. L. Jirtle.

“The measured electrical properties of normal

and malignant human tissues from 50 to 900

MHz,” Med. Phys., vol. 21, pp. 547-550, 1994.

A. M. Campbell and D. V. Land, “Dielectric

properties of female human breast tissue

measured in vitro at 3.2 GHz,” Phys. Med. Biol.,

vol. 37, pp. 193-210, 1992.

K. L. Carr, “Microwave radiometry: Its

importance to the detection of cancer,” IEEE

Trans. Microwave Theory Tech., vol. 37, no. 12,

pp. 1862-1869, Dec. 1989.

K. L. Carr, “Radiometric sensing,” IEEE

Potentials, pp. 21-25, April/May 1997.

L. Dubois, J. – P. Sozanski, V. Tessier, J. –C.

Camart, J. –J. Fabre, J. Pribetich, and M. Chiv, “

Temperature Control and Thermal Dosimetry by

Microwave Radiometry in Hyperthermia,” IEEE

ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006

Trans. Microwave Theory Tech., vol. 44, no. 10,

pp. 1755-1761, Oct. 1996.

S. M. Fraser, D. V. Land, and R. D. Sturrock,

“Microwave Thermography - an Index of

Inflammatory Disease,” Br. J. Rheumatology,

vol. 26, pp. 37-39, 1987.

B. Bocquet, J. C. Van de Velde, A. Mamouni,

and Y. Leroy, “Microwave radiometric imaging

at 3 GHz for the exploration of breast tumours,”

IEEE Trans. Microwave Theory Tech., vol. 38,

pp. 791-793, 1990.

J. Robert, J. Edrich, P. Thouvenot, M. Gautherie,

and J. M. Escanye, “Millimeter wave

thermography: Preliminary clinical finding on

head and neck diseases,” J. Microwave Power,

vol. 14, 1979.

K. L. Carr, A. M. ElMahdi, and J. Schaeffer,

“Dual mode microwave system to enhance early

detection of cancer,” IEEE Trans. Microwave

Theory Tech., vol. 29, pp. 256-260, 1980.

E. A. Cheever, J. B. Leonard, and K. R. Foster,

“Depth of penetration of fields from rectangular

apertures into lossy media,” IEEE Trans.

Microwave Theory Tech., vol. 35, pp. 865-867,

J. Audet, J. C. Bolomey, C. Pichot, D. D.

n’Guyen, M. Robillard, M. Chive, and Y. Leroy,

“Electrical characteristics of waveguide

applicators for medical applications,” J.

Microwave Power, vol. 15, pp. 177-186, 1980.

A. W. Guy, “Electromagnetic fields and relative

heating patterns due to a rectangular aperture

source in direct contact with bilayered biological

tissue,” IEEE Trans. Microwave Theory Tech.,

vol. 29, pp. 214-223, 1971.

D. V. Land, “Medical microwave radiometry and

its clinical applications,” IEE Colloquium

Application of Microwaves in Medicine, pp. 2/1 -

/5, 28 Feb 1995.

B. Enander and G. Larson, “Microwave

radiometry measurements of the temperature

inside a body,” Electronic Letters, vol. 10, pp.

, 1974.

J. Edrich and P. C. Hardee, “Thermography at

millimeter wavelengths,” Proc. IEEE, vol. 62,

pp. 1391-1392, 1974.

E. A. Cheever and K. R. Foster, “Microwave

radiometry in living tissue: What does it

measure?” IEEE Trans. Biomedical Engineering,

vol. 39, no .6, pp. 563-568, June 1992.

B. Bocquet, J. C. van de Velde, A. Mamouni, Y.

Leroy, G. Giauz, J. Delannoy, and D. Delvalee,

“Microwave Radiometric Imaging at 3 GHz for

the Exploration of Breast Tumors,” IEEE Trans.

Microwave Theory Tech., vol. 38, no.6, pp. 791-

, June 1990.

L. Enel, Y. Leroy, J. C. Van de Velde, and A.

Mamouni, “Improved recognition of thermal

structures by microwave radiometry,” Electronics

Letters, vol. 20, pp. 293-294, 1984.

Y. Leroy, A. Mamouni, J. C. Van de Velde, B.

Bocquet, and B. Dujardin, “Microwave

radiometry for non invasive thermometry,”

Automedica (Special Issue on Noninvasive

Thermometry), vol. 8, pp. 181-201, 1987.

J. R. Hadley, B. E. Chapman, J. A. Roberts, D. C.

Chapman, K. C. Goodrich, H. R. Buswell, A. L.

Alexander, J. S. Tsuruda, and D. L. Parker, “A

Three-Coil Comparison for MR Angiography,”

Journal of Magnetic Resonance Imaging, 11 pp.

–468, 2000.

C. E. Hayes, W. A. Edelstein, and J. F. Schenck,

et al., “An efficient, highly homogeneous

radiofrequency coil for whole-body NMR

imaging at 1.5 T,” J. Magn. Reson. Imaging, vol.

, pp. 622–628, 1985.

M. C. Leifer, “Theory of the quadrature elliptic

birdcage coil,” Magn. Reson. Med., vol. 38 pp.

–732, 1997.

S. Li, C. M. Collins, and B. J. Dardzinski, et al.,

“A method to create an optimum current

distribution and homogeneous B1 field for

elliptical birdcage coils,” Magn. Reson. Med.,

vol. 37, pp. 600–608,1997.

J. R. Fitzsimmons, J. C. Scott, and D. M.

Peterson, et al., “Integrated RF coil with

stabilization for FMRI human cortex,” Magn.

Reson. Med., vol. 38, pp. 15–18, 1997.

L. E. Hendrix, J. A. Strandt, and D. L. Daniels, et

al., “Three-dimensional time-of-flight MR

angiography with a surface coil: evaluation in 12

subjects,” American Journal Radiology, vol. 159,

pp. 103–106, 1992.

P. B. Roemer, W. A. Edelstein, C. E. Hayes,

S.P.Souza, and O.M.Mueller, “The NMR phased

array, ” Magn. Reson. Med., 16(2), pp. 192-225,

C. E. Hayes, N. Hattes, and P. B. Roemer,

“Volume imaging with MR phased arrays,”

Magn. Reson. Med., vol. 18, no. 2, pp. 309-

,1991.

C. E. Hayes and P. B. Roemer, “Noise

correlations in data simultaneously acquired from

multiple surface coil arrays,” Magn. Reson. Med.

, vol. 16, no. 2, pp. 181-191, 1991.

S. M. Wright, R. L. Magin, and J. R. Kelton,

“Arrays of mutually coupled receiver coils:

theory and application,” Magn. Reson. Med., vol.

, no. 1, pp. 252-268, 1991.

S. M. Wright and L. L. Wald, “Theory and

application of array coils in MR spectroscopy,”

NMR Biomed., vol. 10, no. 8, pp. 394-410, 1997.

FURSE: SURVEY OF PHASED ARRAYS FOR MEDICAL APPLICATIONS

G. R. Duensing, H. R. Brooker, and J. R.

Fitzsimmons, “Maximizing signal-to-noise ratio

in the presence of coil coupling,” Magn. Reson.

B, vol. 111, no. 3, pp. 230-235, 1996.

D. K. Sodickson and W. J. Manning,

“Simultaneous acquisition of spatial harmonics

(SMASH): ultra-fast imaging with

radiofrequency coil arrays,” Magn. Reson. Med.,

vol. 38, pp. 591-603, 1997.

K. P. Pruessmann, M. Weiger, M. B.

Scheidegger, and P. Boesiger, “SENSE:

Sensitivity encoding for fast MRI,” Magn. Reson.

Med., vol. 42, pp. 952-962, 1999.

Y. Zhu, “Parallel excitation with an array of

transmit coils,” Magn. Reson. Med., vol. 51, no.

, pp. 775-784, 2004.

K. Y. Kojima, J. Szumowski, and R. C. Sheley, et

al., “Lower extremities: MRangiography with a

unilateral telescopic phased-array coil,”

Radiology, 196, pp. 871–875, 1995.

J. W. Monroe, P. Schmalbrock, and D. G. Spigos,

“Phased array coils for upper extremity MRA,”

Magn. Reson. Med., vol. 33, pp. 224–229, 1995.

C. E. Hayes, C. M. Mathis, and C. Yuan,

“Surface coil phased arrays for high-resolution

imaging of the carotid arteries,” Magn. Reson.

Imaging, vol. 1, pp. 109–112, 1996.

C. Yuan, J. W. Murakami, and C. E. Hayes, et al,

“Phased-array magnetic resonance imaging of the

carotid artery bifurcation: preliminary results in

healthy volunteers and a patient with

atheroscleroticdisease,” Magn. Reson. Imaging,

vol. 5, pp. 561–565 1995.

S. H. Faro, S. Vinitski, and H. V. Ortega, et al,

“Carotid magnetic resonance angiography:

improved image quality with dual 3-inch surface

coils,” Neuroradiology, vol. 38, pp. 403–408,

H. A. Stark and E. M. Haacke, “Helmet and

cylindrical shaped CP array coils for brain

imaging: a comparison of signal-to-noise

characteristics,” Proceedings of the International

Society for Magnetic Resonance in Medicine, pp.

, 1996.

J. R. Porter, S. M. Wright, and A. Reykowski, “A

-element phased-array head coil,” Magn.

Reson. Med., vol. 40, pp. 272–279, 1998.

T. Wu and R. King, “The cylindrical antenna

with nonreflecting resistive loading,” IEEE

Trans. Antennas Propag., vol. AP-13, no. 3, pp.

–373, May 1965.

T. Wu and R. King, “Corrections to ‘The

cylindrical antenna with nonreflecting resistive

loading’,” IEEE Trans. Antennas Propag., vol.

AP-13, no. 11, p.998, Nov. 1965.

E. C. Fear, J. Sill, and M. A. Stuchly,

“Experimental Feasibility Study of Confocal

Microwave Imaging for Breast Tumor Detection

,” IEEE Trans. Microwave Theory Tech., vol. 51,

no. 3, pp. 887-892, March 2003.

Special Issue of IEEE Trans. Microwave Theory

Tech., MTT-34, 1986.

C. H. Durney and M. F. Iskander, Antenna

Handbook. Eds. Y.T. Lo & S.W. Lee, 1993.

P. K. Sneed and T. L. Phillips, “Combining

hyperthermia and radiation: How beneficial?,”

Oncology, vol. 5, pp. 99-108, 1991.

C. C. Vernon, J. W. Hand, and S. B. Field, et al.,

“Radiotherapy with or without hyperthermia in

the treatment of superficial localized breast

cancer: Results from five randomized controlled

trials,” Int. J. Radiat. Oncol. Biol. Phys., vol. 35,

pp. 731-44, 1996.

F. Monteccia, “Microstrip antenna design for

hyperthermia treatment of superficial tumors,”

IEEE Trans. BME, vol. 39, no. 6, pp. 580-588,

June 1992,

J. Vba, C. Franconi, F. Montecchia, and I.

Vannucci, “Evanescent-Mode Applicators

(EMA) for superficial and subcutaneous

hyperthermia,” IEEE Trans. Biomed. Eng., vol.

, no.5, pp. 397-407, May 1993.

M. V. Prior, M. L. D. Lumori, J. W. H, G.

Lamaitre, C. J. Schneider, and J. D. P. van Dijk,

“The Use of a Current Sheet Applicator Array for

Superficial Hyperthermia: Incoherent Versus

Coherent Operation,” IEEE Trans. Biomed. Eng.,

vol. 43, no. 7, pp. 694-698, July 1995.

P. R. Stauffer, M. Leoncini, and V. Manfrini, et

al., “Dual concentric conductor radiator for

microwave hyperthermia with improved field

uniformity to periphery of aperture,” IEICE

Trans. on Communicat., vol. E78-B, pp. 826-35,

P. F. Maccarini, H. Rolfsnes, D. Neuman and P.

Stauffer, “Optimization of a Dual Concentric

Conductor Antenna for Superficial Hyperthermia

Applications,” Proceedings of the 26th Annual

International conference of the IEEE EMBS, San

Francisco, CA, USA , September 1-5, 2004.

S. Jacobsen, P. R. Stauffer, and D. G. Neuman,

“Dual-mode antenna design for microwave

heating and noninvasive thermometry of

superficial tissue disease,” IEEE Trans. Biomed.

Eng., vol. 47, 2000.

P. F. Turner, “Interstitial Equal-Phased Arrays for EM

Hyperthermia,” IEEE Trans. Microwave Theory and

Tech., vol. 34, no.5, pp. 572 - 578, May 1986.

C. M. Furse and M. F. Iskander, “Three-

dimensional Electromagnetic Power Deposition

in Tumors using Interstitial Antenna Arrays,”

ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006

IEEE Trans. on Biomedical Engineering, vol. 36,

pp. 977-986, Oct. 1989.

P. Cherry and M. F. Iskander, “FDTD analysis of

power deposition patterns of an array of

interstitial antennas for use in microwave

hyperthermia,” IEEE Trans. Microwave Theory

and Tech, vol. 40, no. 8, pp. 1692-1700, Aug

R. D. Nevels, G. D. Arndt, G. W. Raffoul, J. R.

Carl, and A. Pacifico, “Microwave catheter

design,” IEEE Trans. on Biomedical

Engineering, vol. 45, pp.885–890, July 1998.

C. Manry, S. L. Broschat, C.-K. Chou, and J. A.

McDougall, “An eccentrically coated asymmetric

antenna applicator for intracavity hyperthermia

treatment of cancer,” IEEE Trans. on Biomedical

Engineering, vol. 39, no. 9, pp. 935-942, Sept.

J. C. Camart, D. Despretz, M. Chive, and J.

Pribetich, “Modeling of various kinds of

applicators used for microwave hyperthermia

based on the FDTD method,” IEEE Trans.

Microwave Theory and Tech., vol. 44, no. 10, pp.

-1818, Oct. 1996.

P. F. Turner, “Hyperthermia and Inhomogeneous

Tissue Effects Using an Annular Phased Array,”

IEEE Trans. Microwave Theory and Tech., vol.

, no. 8, pp. 874 - 875, Aug. 1984.

P. Stauffer, J. Schlorff, R. Taschereau, T. Juang,

D. Neuman, P. Maccarini, J. Pouliot and J. Hsu,

“Combination Applicator for Simultaneous Heat

and Radiation,” Proceedings of the 26th Annual

International Conference of the IEEE EMBS, San

Francisco, CA, September 1-5, 2004.

Y. Kotsuka, E. Hankui, and Y. Shigematsu,

“Development of Ferrite Core Applicator System

for Deep-Induction Hyperthermia,” IEEE Trans.

Microwave Theory and Tech., vol. 44, no. 10, pp.

-1810, Oct. 1996.

D. M. Sullivan, “Three-dimensional computer

simulation in deep regional hyperthermia using

the FDTD Method,” IEEE Trans. Microwave

Theory and Tech., vol. 38, no. 2, pp. 201-211,

Feb. 1990.

P. F. Turner, “Sigma 60–24 Prototype Test

Results,” BSD Medical Corporation, Salt Lake

City, UT, Internal Rep., 1992.

J. Nadobny, H. Fähling, M. Hagmann, P. Turner,

W. Wlodarczyk, J.Gellermann, P. Deuflhard, and

P. Wust, “Experimental and numerical

investigations of feed-point parameters in a 3-D

hyperthermia applicator using different models of

feed networks,” IEEE Trans. Biomed. Eng., vol.

, no. 11, pp. 1348–1359, Nov. 2002.

J. Nadobny, W. Wlodarczyk, L. Westhoff, J.

Gellermann, R. Felix, and P. Wust, “A Clinical

Water-Coated Antenna Applicator for MR-

Controlled Deep-Body Hyperthermia: A

Comparison of Calculated and Measured 3-D

Temperature Data Sets,” IEEE Trans. on

Biomedical Engineering, vol. 52, no. 3, pp. 505-

, March 2005.

K. S. Nikita and N. K. Uzunoglu, “Coupling

Phenomena in Concentric Multi-Applicator

Phased Array Hyperthermia Systems,” IEEE

Trans. Microwave Theory and Tech., vol. 44, no.

, pp. 65-74, Jan 1996.

F. Bardati, A. Borrani, A. Gerardino, and G. A.

Lovisolo, “SAR Optimization in a Phased Array

Radiofrequency Hyperthermia System,” IEEE

Trans. on Biomedical Engineering, vol. 42, no.

, pp. 1201-1207, Dec. 1995.

R. W. P. King, G. J. Fikioris, and R. B. Mack,

Cylindrical Antennas and Arrays, Cambirdge,

U.K.: Cambridge Univ. Press, 2002.

S. Ebihara and T. Yamamoto, “Resonance

analysis of a circular dipole array antenna in

cylindrically layered media for directional

borehole radar,” IEEE Trans. Geosci. Remote

Sensing, vol. 44, no.1, pp. 22-31, Jan. 2006.

K. Holliger and T. Bergmann, “Numerical

modeling of borehole geo-radar data,”

Geophysics, vol. 67, no. 4, pp. 1249-1257,

July/Aug. 2002.

J. R. Hadley, “Design of Radio Frequency Coil

Arrays for Optimal Signal to Noise Ratio for

Magnetic Resonance Angiography,” PhD

Dissertation, University of Utah Electrical and

Computer Engineering Department, 2005.

H. Massoudi, C. H. Durney, and M. F. Iskander,

“Limitations of the cubical block model of man

in calculating SAR distribution,” IEEE Trans.

Microwave Theory and Tech., vol. 32, pp. 746-

, 1984.

C. T. Tsai, H. Massoudi, C. H. Durney, and M. F.

Iskander, “A procedure for calculating fields

inside arbitrarily-shaped, inhomogeneous

dielectric bodies using linear basis functions with

the moment method,” IEEE Trans. Microwave

Theory and Tech., vol. 34, pp. 1131-1139, 1986.

O. H. Schaubert, D. R. Wilton, and A. W.

Glisson, “A tetrahedral modeling method of

electromagnetic scattering by arbitrarily shaped

inhomogeneous objects,” IEEE. Trans. Antennas

and Propagation, vol. 32, pp. 75-82, 1984.

B. M. Green and M. A. Jensen, “Diversity

performance of dual-antenna handsets near

operator tissue,” IEEE. Trans. Antennas and

Propagation, vol. 48, no. 7, pp. 1017-1024, July

O. Gandhi, G. Lazzi, and C. Furse,

“Electromagnetic Absorption in the Human Head

FURSE: SURVEY OF PHASED ARRAYS FOR MEDICAL APPLICATIONS

and Neck for Mobile Telephones at 835 and 1900

MHz,” IEEE Trans. on Microwave Theory and

Tech., vol. 44, pp. 1884 -1897, 1996.

P. Soontornpipit, C. M. Furse, and Y. C. Chung ,

“Design of Implantable Microstrip Antenna for

Communication with Medical Implants,” Special

Issue of IEEE Trans. on Microwave Theory and

Tech. on Medical Applications and Biological

Effects of RF/Microwaves , Sept. 2004.

C. E. Reuter, A. Taflove, V. Sathiaseelan, M.

Piket-May, and B. B. Mittral, “Unexpected

physical phenomena indicated by FDTD

modeling of the Sigma-60 deep hyperthermia

applicator,” IEEE Trans. Microwave Theory and

Tech., vol. 46, no.4, pp. 313-319, April 1998.

C.-Q. Wang and O. P. Gandhi, “Numerical

simulation of annular phased arrays for

anatomically based models using the FDTD

method,” IEEE Trans. Microwave Theory and

Tech., vol. 37, no.1, pp. 118-126, Jan, 1989.

D. Sullivan, D. Buechler, and F. A. Gibbs,

“Comparison of measured and simulated data in

an annular phased array using an inhomogeneous

phantom,” IEEE Trans. Microwave Theory and

Tech., vol. 40, no.3, pp. 600-604, Mar. 1992.

C. M. Furse, J.-Y. Chen, and O. P. Gandhi, “Use

of the Frequency-Dependent Finite-Difference

Time-Domain Method for Induced Current and

SAR Calculations for a Heterogeneous Model of

the Human Body,” IEEE Trans. on

Electromagnetic Compatibility, pp.128-133, May

C. Furse and O. P. Gandhi, “Calculation of

Electric Fields and Currents Induced in a

Millimeter-Resolution Human Model at 60 Hz

Using the FDTD Method,” Bioelectromagnetics,

(5), pp.293-299, 1998.

C. M. Furse and O. P. Gandhi, “A Memory

Efficient Method of Computing Specific

Absorption Rate in CW FDTD Simulations,”

IEEE Transactions on Biomedical Engineering,

vol. 43, no. 5, pp. 558-560, May 1996.

C. H. Durney, C. C. Johnson, P. W. Barber, H.

Massoudi, M. F. Iskander, J. L. Lords, D. K.

Ryser, S. J. Allen, and J. C. Mitchell,

Radiofrequency Radiation Dosimetry Handbook,

nd ed., USAF School of Medicine, Brooks AFB,

TX, 1978.

O. P. Gandhi, , Y. G. Gu, J. Y. Chen, and H. I.

Bassen, “Specific absorption rates and induced

current distributions in an anatomically based

human model for plane-wave exposures,” Health

Physics, 63(3), pp. 281-290, 1992.

O. P. Gandhi and C. M. Furse, “Millimeter-

resolution MRI-based models of the human body

for electromagnetic dosimetry from ELF to

microwave frequencies,” Voxel Phantom

Development: Proceedings of an International

Workshop held at the National Radiological

Protection Board, Chilton, UK, July 6-7, 1995,

Peter J. Dimbylow, editor.

P. J. Dimbylow, “The development of realistic

voxel phantoms for electromagnetic field

dosimetry,” Voxel Phantom Development:

Proceedings of an International Workshop held

at the National Radiological Protection Board,

Chilton, UK, July 6-7, 1995, Peter J. Dimbylow,

editor.

P. Olley and P. S. Excell, “Classification of high

resolution voxel image of a human head,” Voxel

Phantom Development: Proceedings of an

International Workshop held at the National

Radiological Protection Board, Chilton, UK,

July 6-7, 1995, Peter J. Dimbylow, editor.

M. A. Stuchly, K. Caputa, A. van Wensen, and

A. El-Sayed, “Models of human and animal

bodies in electromagnetics,” Voxel Phantom

Development: Proceedings of an International

Workshop held at the National Radiological

Protection Board, Chilton, UK, July 6-7, 1995,

Peter J. Dimbylow, editor.

National Library of Medicine, Visible Man

Project, MRI scans, CT scans, and photographs

available on CD through Research Systems, Inc.,

Wilderness Place, Boulder, CO 80301.

C. Gabriel, “Compilation of the dielectric

properties of body tissues at RF and microwave

frequencies,” Final Report AL/OE-TR-1996-0037

submitted to Occupational and Environmental

Health Directorate, RFR Division, 2503

Gillingham Dr., Brooks AFB, TX, June 1996.

M. A. Stuchly and S. S. Stuchly, “Dielectric

properties of biological substances – tabulated,”

J. Microwave Power, 15 (1), pp. 19-26, 1980.

S. Rush, J. A. Abildskov, and R. McFee,

“Resistivity of body tissues at low frequencies,”

Circ. Research, vol. XII, pp. 40-50, 1963.

L. A. Geddes and L. E. Baker, “The specific

resistance of biological material – a compendium

of data for the biomedical engineer and

physiologist,” Med. & Biol. Engng., vol. 5, pp.

-293, Pergamon Press., 1967.

University of Utah Dielectric Database OnLine

http://www.ece.utah.edu/dielectric/

D. M. Pozar, “Microstrip antennas,” Proc. IEEE,

vol. 80, pp. 79-91, Jan 1992.

A. Cucini, M. Albani, and S. Maci, “Truncated

floquet wave full-wave analysis of large phased

arrays of open-eneded waveguides with

nonuniform amplitude excitation,” IEEE Trans.

Antennas and Propagation, vol. 51, no.6, pp.

-1394, June 2003.

ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006

G. Turner and C. Christodoulou, “FDTD analysis

of phased array antennas,” IEEE Trans. Antennas

and Propagation, vol. 47, no. 4, pp. 661-667,

April 1999.

J. Ren, O. P. Gandhi, L. R. Walker, J. Fraschilla,

and C. R. Boerman, “Floquet-based FDTD

analysis of two-dimensional phased array

antennas,” IEEE Microwave and Guided Wave

Letters, vol. 4, no.4, pp. 109-111, April 1994.

C. Railton and G. S. Hilton, “The analysis of

medium-sized arrays of complex elements using

a combination of FDTD and reaction matching,”

IEEE Trans. Antennas and Propagation, vol. 47,

no. 4, pp. 707-714, April 1999.

J. Gomez-Tagle, P. Wahid, M. Chriyssomallis,

and C. Christodoulou, “FDTD analysis of finite-

sized phased array microstrip antennas,” IEEE

Trans. Antennas and Propagation, vol. 51, no. 8,

pp. 2057-2062, Aug. 2003.

H. Holter and H. Steyskal, “On the size

requirement for finite phased-array models,”

IEEE Trans. Antennas and Propagation, vol. 50,

no. 6, pp. 836-840, June 2002.

T. Su, N.-T. Huang, Y. Lio, W. Yu, and R.

Mittra, “Investigation of instability characteristics

arising in the FDTD simulation of electrically

large antenna arrays,” IEEE Antennas and

Propagation Society International Symposium,

vol. 1, pp. 1014-1017, June 2004

##submission.downloads##

已出版

2022-06-18

栏目

General Submission