Parametric Modeling for Curved Slots of Vivaldi Antenna Based on Artificial Neural Network
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2023.ACES.J.380903关键词:
Artificial neural network, cubic spline interpolation, parametric modeling, Vivaldi antenna摘要
This paper proposes an artificial neural network (ANN) model based on parametric modeling for curved slots of the Vivaldi antenna. A more effective processing method is achieved by feeding ANN with the point positions that produce curved edges via cubic spline interpolation rather than the picture of metallic patches. The predicted results of ANN, including S-parameter and gain, agree well with those from the full-wave simulation. With the trained model, a Vivaldi antenna with the lower cut-off frequency is optimized by the multi-objective genetic algorithm.
##plugins.generic.usageStats.downloads##
参考
F. T. Wu, G. F. Zhang, X. L. Yuang, and N. C. Yuang, “Research on ultra-wide band planar Vivaldi antenna array,” Microw. Opt. Technol. Lett., vol. 48, no. 10, pp. 2117-2120, Oct. 2006.
M. J. Horst, M. T. Ghasr, and R. Zoughi, “Design of a compact V-band transceiver and antenna for millimeter-wave imaging systems,” IEEE Trans. Instrum. Meas., vol. 68, no. 11, pp. 4400-4411, Nov. 2019.
M. R. Hamid, P. Gardner, P. S. Hall, and F. Ghanem, “Vivaldi with tunable narrow band rejection,” Microw. Opt. Technol. Lett., vol. 53, no. 5, pp. 1125-1128, May 2011.
P. J. Gibson, “The Vivaldi aerial,” in Proc. 9th Eur. Microw. Conf., Brighton, U.K., pp. 101-105, June 1979.
E. Gazit, “Improved design of the Vivaldi antenna,” IEE Proc. H-Microw. Antennas Propag., vol. 135, no. 2, pp. 89-92, Apr. 1988.
J. D. S. Langley, P. S. Hall, and P. Newham, “Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation,” Electron. Lett., vol. 29, no. 23, p. 2004, 1993.
A. Dadgarpour, F. Jolani, Y. Yu, Z. Chen, B. S. Virdee, and T. A. Denidni, “A compact balanced antipodal bow-tie antenna having double notch-bands,” Microw. Opt. Technol. Lett., vol. 56, no. 9, pp. 2010-2014, Sep. 2014.
M. C. Sai and D. Chandwani, “Balanced antipodal Vivaldi antenna design with hexagonal slots and three level geometric patches,” in 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, pp. 1057-1060, June 2019.
L. Juan, F. Guang, Y. Lin, and F. Demin, “A modified balanced antipodal Vivaldi antenna with improved radiation characteristics,” Micro & Optical Tech Letters, vol. 55, no. 6, pp. 1321-1325, June 2013.
Y.-F. Liu, L. Peng, and W. Shao, “An efficient knowledge-based artificial neural network for the design of circularly polarized 3-D-printed lens antenna,” IEEE Trans. Antennas Propagat., vol. 70, no. 7, pp. 5007-5014, July 2022.
T. N. Kapetanakis, I. O. Vardiambasis, M. P. Ioannidou, and A. Maras, “Neural network modeling for the solution of the inverse loop antenna radiation problem,” IEEE Trans. Antennas Propagat., vol. 66, no. 11, pp. 6283-6290, Nov. 2018.
L.-Y. Xiao, W. Shao, F.-L. Jin, and B.-Z. Wang, “Multiparameter modeling with ANN for antenna design,” IEEE Trans. Antennas Propagat., vol. 66, no. 7, pp. 3718-3723, July 2018.
L.-Y. Xiao, W. Shao, F.-L. Jin, B.-Z. Wang, and Q. H. Liu, “Inverse artificial neural network for multiobjective antenna design,” IEEE Trans. Antennas Propagat., vol. 69, no. 10, pp. 6651-6659, Oct. 2021.
H.-Y. Luo, W. Shao, X. Ding, B.-Z. Wang, and X. Cheng, “Shape modeling of microstrip filters based on convolutional neural network,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1019-1022, Sep. 2022.
N.-N. Wang, M. Fang, H.-T. Chou, J.-R. Qi, and L.-Y. Xiao, “Balanced antipodal Vivaldi antenna with asymmetric substrate cutout and dual-scale slotted edges for ultrawideband operation at millimeter-wave frequencies,” IEEE Trans. Antennas Propagat., vol. 66, no. 7, pp. 3724-3729, July 2018.