A Novel 3-D DGTD-FDTD Hybrid Method withOne Overlapping Virtual Layer
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2023.ACES.J.380802关键词:
Discontinuous Galerkin time-domain method, finite-difference time-domain method, hybrid method, transient analysis摘要
Compared with the traditional finite difference time-domain (FDTD) method, the discontinuous Galerkin time-domain (DGTD) method may face the issue of intense computation. In this paper, a novel 3-D DGTD-FDTD hybrid method is proposed to dramatically reduce the unknowns of the DGTD method. Instead of the common mass-lumped elements, this virtual layer of the Yee grid is implemented on the intersecting boundary, which simplifies the mesh generation and reduces the number of unknowns. To validate the proposed method, two examples of sphere scattering and horn antenna are considered. The simulation results demonstrate the effectiveness of the proposed method.
##plugins.generic.usageStats.downloads##
参考
J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. New York, NY, USA: Springer, pp. 1-39, 2008.
S. Dosopoulos and J.-F. Lee, “Interior penalty discontinuous Galerkin finite element method for the time-dependent first-order Maxwell’s equations,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 4085-4090, Dec. 2010.
M. Li, Q. Wu, Z. Lin, Y. Zhang, and X. Zhao, “A minimal round-trip strategy based on graph matching for parallel DGTD method with local time-stepping,” IEEE Antennas Wirel Propag Lett., vol. 2, pp. 243-247, Feb. 2023.
J.-M. Jin, The Finite Element Method in Electromagnetics. Hoboken, NJ, USA: Wiley, pp. 514-523, 2015.
J. Chen and Q. Liu, “Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review,” Proc. IEEE, vol. 101, no. 2, pp. 242-254, Feb. 2013.
A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method. Norwood, MA, USA: Artech House, pp. 638-649, 2005.
F. Hassan, “High-order discontinuous Galerkin method for time-domain electromagnetics on non-conforming hybrid meshes,” Math Comput Simul., no. 107, pp. 134-156, Jan. 2015.
Z. Xiao, B. Wei, and D. Ge, “A hybrid mesh DGTD algorithm based on virtual element for tetrahedron and hexahedron,” IEEE Trans. Antennas Propag., vol. 69, no. 4, pp. 2242-2248, Apr. 2021.
D. S. Balsara and J. J. Simpson, “Making a synthesis of FDTD and DGTD schemes for computational electromagnetics,” in IEEE J Multiscale Multiphys Comput Tech., vol. 5, pp. 99-118, June2020.
T. Rylander and A. Bondeson, “Stable FEM-FDTD hybrid method for Maxwell’s equations,” in Comput. Phys. Commun., vol. 125, no. 1-3, pp. 75-82, Mar. 2000.
J. Wang, Q. Ren, and F. Dai, “3-D hybrid finite-difference time-domain (FDTD)/wave equation finite element time-domain (WE-FETD) method,” Int. Symp. on Antennas, Propag and EM Theory (ISAPE), pp. 1-2, 2021.
N. V. Venkatarayalu, G. Y. Beng, and L.-W. Li, “On the numerical errors in the 2-D FE/FDTD algorithm for different hybridization schemes,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 168–170, Apr. 2004.
A. Sharbaf and R. Sarraf-Shirazi, “An unconditionally stable hybrid FETD-FDTD formulation based on the alternating-direction implicit algorithm,” IEEE Antennas Wirel Propag Lett., vol. 9, pp. 1174-1177, Dec. 2010.
S. G. Garcia, M. F. Pantoja, C. M. de Jong van Coevorden, A. R. Bretones, and R. G. Martin, “A new hybrid DGTD/FDTD method in 2-D,” in IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 764-766, Dec. 2008.
Q. Sun, Q. Ren, Q. Zhan, and Q. H. Liu, “3-D domain decomposition based hybrid finite-difference time-domain/finite-element time-domain method with nonconformal meshes,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 10, pp. 3682-3688, Apr. 2017.
B. Zhu, J. Chen, W. Zhong, and Q. Liu, “A hybrid FETD-FDTD method with nonconforming meshes,” Commun Comput Phys., vol. 9, no. 3, pp. 828-842, Mar. 2011.
K. S. Yee, J. S Chen, and A. H. Chang, “Conformal finite-different time-domain (FDTD) with overlapping grids,” IEEE Trans. Antennas Propag., vol. 40, no. 9, pp. 1068-1075, Sep. 1992.
F. Xu and W. Hong, “Domain decomposition FDTD algorithm for the analysis of a new type of E-plane sectorial horn with aperture field distribution optimization,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 426-434, Feb. 2004.
Y. Zhou, R. Huang, S. Wang, Q. Ren, W. Zhang, G. Yang, and Q. H. Liu, “An adaptive DGTD algorithm based on hierarchical vector basis function,” in IEEE Trans. Antennas Propag., vol. 69, no. 12, pp. 9038-9042, Dec. 2021.
J. Alvarez, L. D. Angulo, M. F. Pantoja, A. R. Bretones, and S. G. Garcia, “Source and boundary implementation in vector and scalar DGTD,” in IEEE Trans. Antennas Propag, vol. 58, no. 6, pp. 1997-2003, June 2010.
L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, “Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes,” ESAIM, Math. Model Numer. Anal., vol. 39, no. 6, pp. 1149-1176, Nov. 2005.
S. Dey and R. Mittra, “A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects,” in IEEE Microwave Opt. Tech. Lett, vol. 7, no. 9, pp. 273-275, June 1997.