Compact Series-fed Circularly-polarized Patch Array basedon Microstrip Line
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2023.ACES.J.381002关键词:
Circularly-polarized antenna, microstrip line, microstrip patch antenna, series-fed antenna array摘要
A compact single-layer circularly polarized (CP) antenna array is proposed in this paper for 5G/6G applications. The conventional microstrip line is modified as a feeding network by periodically and alternatively loading field blocking stubs, producing a linearly polarized in-phase radiative field aperture. By adding CP corner-truncated patches beside these in-phase fields, a linear high-gain CP antenna array excited by a single feed is obtained. The feasibility of the proposed design is demonstrated through the fabrication and measurement of a 16-element linear array. The results indicate that the 3 dB axial ratio bandwidth is 3.5% (19.60∼20.30 GHz), the -10 dB impedance bandwidth totally covers the 3 dB axial ratio bandwidth, and the peak realized gain is 14.9 dBi under an antenna length of 5.69λ0. This proposed strategy provides a very compact antenna structure to achieve high-gain CP radiation without the requirement of impedance transformers, phase shifters, and open-stop-band suppressing measures. Moreover, the antenna has a per-unit-length CP gain of 5.5/λ0, which is superior to many single-layer high-gain CPantennas.
##plugins.generic.usageStats.downloads##
参考
Y. T. Lo and S. W. Lee, Antenna Handbook. New York: Van Nostrand Reinhold, pp. 21-23, 1993.
S. Gao, Q. Luo, and F. Zhu, Circularly Polarized Antennas. John Wiley & Sons, pp. 191-258, 2014.
J. R. James and P. S. Hall, Handbook of Microstrip Antennas (IEE Electromagnetic Waves Series; 28), London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, pp. 219-272,1989.
D. M. Pozar, Microwave Engineering, 4th ed., Hoboken, NJ: Wiley, pp. 95-158, 2012.
J. Huang, “A technique for an array to generate circular polarization with linearly polarized elements,” IEEE Trans. Antennas Propag., vol. 34, no. 9, pp. 1113-1124, Sep. 1986.
Y. Li, Z. Zhang, and Z. Feng, “A sequential-phase feed using a circularly polarized shorted loop structure,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1443-1447, Mar. 2013.
C. Deng, Y. Li, Z. Zhang, and Z. Feng, “A wideband sequential-phase fed circularly polarized patch array,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3890-3893, July 2014.
S. X. Ta and I. Park, “Compact wideband circularly polarized patch antenna array using metasurface,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1932-1936, Mar. 2017.
A. R. Weily and Y. J. Guo, “Circularly polarized ellipse-loaded circular slot array for millimeter-wave WPAN applications,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2862-2870, Oct. 2009.
G. Montisci, “Design of circularly polarized waveguide slot linear arrays,” IEEE Trans. Antennas Propag., vol. 54, no. 10, pp. 3025-3029, Oct. 2006.
P. Sanchez-Olivares and J. L. Masa-Campos, “Novel four cross slot radiator with tuning vias for circularly polarized SIW linear array,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 2271-2275, Apr. 2014.
C. Zhijun, W. Hong, K. Zhenqi, C. Jixin, and K. Wu, “Circularly polarized slot array antenna based on substrate integrated waveguide,” 2008 Int. Conf. on Microwave and Millimeter Wave Technology, Apr. 2008.
P. Chen, W. Hong, Z. Kuai, and J. F. Xu, “A substrate integrated waveguide circular polarized slot radiator and its linear array,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 120-123, Apr. 2009.
J. Zhu, S. Liao, Y. Yang, S. Li, and Q. Xue, “60 GHz dual-circularly polarized planar aperture antenna and array,” IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 1014-1019, Feb. 2018.
H. Zhou and W. Hong, “Compact circularly polarized patch array antenna,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 778-781, Aug. 2016.
Y. Li, Z. N. Chen, X. Qing, Z. Zhang, J. Xu, and Z. Feng, “Axial ratio bandwidth enhancement of 60-GHz substrate integrated waveguide-fed circularly polarized LTCC antenna array,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4619-4626, Oct. 2012.
J. Huang, W. Lin, F. Qiu, C. Jiang, D. Lei, and Y. J. Guo, “A low profile, ultra-lightweight, high efficient circularly-polarized antenna array for Ku band satellite applications,” IEEE Access, vol. 5, pp. 18356-18365, Sep. 2017.
D. F. Guan, C. Ding, Z. P. Qian, Y. S. Zhang, Y. J. Guo, and K. Gong, “Broadband high-gain SIW cavity-backed circular-polarized array antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1493-1497, Apr. 2016.
Z. Hao, X. Liu, X. Huo, and K. Fan, “Planar high-gain circularly polarized element antenna for array applications,” IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 1937–1948, May 2015.
S. Ogurtsov and S. Koziel, “A conformal circularly polarized series-fed microstrip antenna array design,” IEEE Trans. Antennas Propag., vol. 68, no. 2, pp. 873-881, Feb. 2020.
T. R. Cameron, A. T. Sutinjo, and M. Okoniewski, “A circularly polarized broadside radiating “herringbone” array design with the leaky-wave approach,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 826-829, Aug. 2010.
S. J. Chen, C. Fumeaux, Y. Monnai, and W. Withayachumnankul, “Dual circularly polarized series-fed microstrip patch array with coplanar proximity coupling,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1500-1503, Jan. 2017.
N. Nguyen-Trong, S. J. Chen, and C. Fumeaux, “High-gain dual-band dual-sense circularly polarized spiral series-fed patch antenna,” IEEE Open Journal of Antennas and Propagation, vol. 3, pp. 343-352, Mar. 2022.
Q. Chen, Y. Wei, J. Zhang, and W. Wu, “Dual-band circularly polarized shared-aperture array with wideband and small frequency ratio,” 2016 IEEE Int. Conf. on Ubiquitous Wireless Broadband, pp. 1-3, Oct. 2016.
P. D. Hilario Re, D. Comite, and S. K. Podilchak, “Single-layer series-fed planar array with controlled aperture distribution for circularly polarized radiation,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 4973-4978, June 2020.
K. Hirose, K. Shinozaki, and H. Nakano, “A comb-line antenna modified for wideband circular polarization,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1113-1116, May 2015.
H. Lee, J. H. Choi, C.-T. M. Wu, and T. Itoh, “A compact single radiator CRLH-inspired circularly polarized leaky-wave antenna based on substrate-integrated waveguide,” IEEE Trans. Antennas Propag., vol. 63, no. 10, pp. 4566-4572, Oct.2015.
S. Otto, Z. Chen, A. Al-Bassam, A. Rennings, K. Solbach, and C. Caloz, “Circular polarization of periodic leaky-wave antennas with axial asymmetry: theoretical proof and experimental demonstration,” in IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1817-1829, Apr. 2014.
L. Chang, Z. Zhang, Y. Li, and M. F. Iskander, “Single-layer magnetic current antenna array with high realized aperture usage rate based on microstrip line structure,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 584-592, Dec. 2017.