Metamaterial-filled Quarter Circular Microstrip Antenna in the Subwavelength Scale for 3.5 GHz Band Communications
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2024.ACES.J.390406关键词:
Metamaterials, quarter circular microstrip antenna, subwavelength摘要
A metamaterial-filled quarter circular microstrip antenna (meta-QCMSA) is proposed for 5G communications in the 3.5 GHz band. Compared with traditional CMSAs, the new meta-QCMSA is superior in its small patch in the subwavelength scale realized by collaboratively using metamaterial and field symmetry techniques. This combination method is observed to be more powerful than a single method solely used. One practical meta-QCMSA is designed and experimentally demonstrated near 3.5 GHz. Its patch length is 0.1λ0, much smaller than the traditional CMSA. In addition, the compact meta-QCMSA is observed to have a considerable bandwidth of 3.8% and antenna gain of 3.9 dBi in experiments.
##plugins.generic.usageStats.downloads##
参考
3GPP TS 38.104, V17.5.0 [Online]. Available: https://www.3gpp.org.
R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Boston: Artech House, 2001.
G. Kumar and K. P. Ray, Broadband Microstrip Antennas. Boston: Artech House, 2003.
J. S. Kula, D. Psychoudakis, W.-J. Liao, C.-C. Chen, J. L. Volakis, and J. W. Halloran, “Patch-antenna miniaturization using recently available ceramic substrates,” IEEE Antennas and Propagation Magazine, vol. 48, pp. 13-20, 2006.
W. Lee, Y. Hong, H. Won, M. Choi, K. Isbell, J. Lee, T. Kim, and S. Park, “Lossy ferrite core-dielectric shell structure for miniature GHz axial-mode helical antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 18, pp. 951-955, 2019.
S. Jemmeli, T. Monediere, E. Arnaud, and L. Huitema, “Ultra-miniature and circularly polarized ferrite patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 71, pp. 6435-6443, 2023.
S. Jahani, J. Rashed-Mohassel, and M. Shahabadi, “Miniaturization of circular patch antennas using MNG metamaterials,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1194-1196, 2010.
F. Farzami, K. Forooraghi, and M. Norooziarab, “Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1540-1542, 2011.
B. Zarghooni, A. Dadgarpour, and T. A. Denidni, “Greek-key pattern as a miniaturized multiband metamaterial unit-cell,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1254-1257, 2015.
T. Cai, G. Wang, X. Zhang, Y. Wang, B. Zong, and H. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Transactions on Antennas and Propagation, vol. 63, pp. 2306-2311, 2015.
M. Li, K. Luk, L. Ge, and K. Zhang, “Miniaturization of magnetoelectric dipole antenna by using metamaterial loading,” IEEE Transactions on Antennas and Propagation, vol. 64, pp. 4914-4918, 2016.
Q. Huang, X. Xu, and R. Zhang, “Study of the combination method and its application to shrink a patch antenna operating in the UHF band,” Applied Computational Electromagnetics Society Journal, vol. 37, pp. 209-214, 2022.
S. Painam and C. Bhuma, “Miniaturizing a microstrip antenna using metamaterials and metasurfaces,” IEEE Antennas and Propagation Magazine, vol. 61, pp. 91-135, 2019.
S. Liu, Z. Wang, and Y. Dong, “Compact wideband SRR-inspired antennas for 5G microcell applications,” IEEE Transactions on Antennas and Propagation, vol. 69, pp. 5998-6003, 2021.
H. Lu, G. Dai, X. Xu, and X. Deng, “Miniaturized circular microstrip antenna designed with quasi-periodic sector metamaterials,” Microwave and Optical Technology Letters, vol. 64, pp. 1614-1620, 2022.
H. Lu and X. Xu, “Comparative study of miniaturized microstrip antennas designed with different super-substrate materials operating at 900 MHz,” Applied Physics A, vol. 128, p. 297,2022.
M. Ameen and R. K. Chaudhary, “ENG-TL inspired dual-polarized antenna using curved meander, two-arm Archimedean spirals and CSRR mushroom,” Microwave and Optical Technology Letters, vol. 65, pp. 1778-1786, 2023.
C. A. Balanis, Advanced Engineering Electromagnetics. Hoboken: Wiley, 2012.