Compact Shaped Antennas for Wide-Band Radiogoniometry
关键词:
Antennas, shaped monopole, radiogoniometry, wide-band antennas摘要
In this paper, a wide band monopole antenna with a shaped profile is presented. Shaped profile and end-caps allow for a compact antenna with respect to wavelength. Antenna is designed to be as isotropic as possible and with low phase deviation from spherical wave front to allow accurate detection of the direction of arrival of an unknown signal when used in radiogoniometry applications.
##plugins.generic.usageStats.downloads##
参考
P. E. Howland, D. Maksimiuk, and G. Reitsma, “FM radio based bistatic radar,” IEE Proc., Radar Sonar Navig., vol. 152, pp. 107-115, 2005.
P. E. Howland, “Target tracking using televisionbased bistatic radar,” IEE Proc., Radar Sonar Navig., vol. 146, pp. 166-174, 1999.
A. Farina, P. Gallina, L. Lucci, R. Mancinelli, G. Pelosi, and S. Selleri, “Back lobe minimization for a VHF LPDA-based interferometer,” 11th Int. Symp. Microwave Optical Techn. (ISMOT-2007), Monte Porzio Catone – Roma (Italy), pp. 195- 198, Dec. 17-21, 2007.
H. A. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE, vol. 35, pp. 1479-1484, 1947.
R. C. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, vol. 69, pp. 170-182, 1981.
R. W. Ziolkowski and A. D. Kipple, “Application of double negative materials to increase the power radiated by electrically small antennas,” IEEE Trans. Antennas Propagat., vol. 51, pp. 2626- 2640, 2003.
R. W. Ziolkowski and A. Erentok, “At and below the Chu limit: passive and active broad bandwidth metamaterial-based electrically small antennas,” IET Microwaves, Antennas Propagat., vol. 1, no. 1, pp. 116-128, 2007.
A. Erentok and R. W. Ziolkowski, “Metamaterialinspired efficient electrically small antennas,” IEEE Trans. Antennas Propagat., vol. 56, pp. 691-707, 2008.
P. Jin and R. W. Ziolkowski, “Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements,” IEEE Trans. Antennas Propagat., vol. 58, pp. 318-327, 2010.
S. Tanaka, et al., “Miniaturised wideband folded bow-tie antenna,” Electronics Letters, vol. 45, pp. 295-297, 2009.
K. L. Shlager, G. S. Smith, and J. G. Maloney, “Optimization of bow-tie antennas for pulse radiation,” IEEE Trans. Antennas Propagat., vol. 42, pp. 975-982, 1994.
C. Cho, I. Park, and H. Choo, “Design of a small antenna for wideband mobile direction finding systems,” IET Microwaves, Antennas Propagat, vol. 4, pp. 930-937, 2010.
D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propagat. Mag., vol. 45, pp. 38-57, 2003.
J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas Propagat. Mag., vol. 44, pp. 20-36, 2002.
Y. Liu, S. Yoon, J. R. DeLuis. F. D. Flaviis, and N. G. Alexopoulos, “Polya elements with application to antennas, thin absorbers and filters,” IEEE Trans. Antenna Propagat., vol. 60, pp. 5092-5099, Nov. 2012.
E. Agastra, G. Pelosi, S. Selleri, and R. Taddei, Multiobjective Optimization Techniques, in The Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, New York (NY), pp. 1-29, 2014. ISBN 978-0-471-34608-1.