Baffle Diffraction in Interferometric Detectors of Gravitational Waves

作者

  • Giuseppe Pelosi Department of Information Engineering University of Florence, Florence, 50139, Italy
  • Leonardo Possenti Department of Information Engineering University of Florence, Florence, 50139, Italy
  • Stefano Selleri Department of Information Engineering University of Florence, Florence, 50139, Italy
  • Innocenzo M. Pinto Department of Engineering University of Sannio, Benevento, 82100, Italy

关键词:

Gaussian beams, gravitational wave detectors, uniform theory of diffraction

摘要

This paper presents an efficient highfrequency analysis framework for studying diffraction occurring at irises, or baffles, in the arms of a Fabry- Perot optical interferometer, relevant to the design and operation of interferometric detectors of gravitational waves like LIGO and Virgo.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

B. P. Abbott. et al., “LIGO: The laser interferometer gravitational wave observatory,” Rep. Prog. Phys., vol. 72, no. 6, pp. 07690-07740, 2009.

T. Accadia, et al., “Virgo: A laser interferometer to detect gravitational waves,” J. Instrum., vol. 7, no. 3, pp. 3012-3018, 2012.

Y. Aso, et al., “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D, vol. 88, no. 8, pp. 043007-043023, 2013.

B. P. Abbott, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Letters, vol. 116, no. 2, pp. 061102-061118, 2016.

B. P. Abbott, “GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole merger,” Phys. Rev. Letters, vol. 116, no. 6, pp. 241103-241117, 2016.

B. Bhawal, “Diffraction losses of various modes in advanced LIGO arm cavity,” LIGO Document T050234, 2005.

M. R. Smith, “Stray light control for advanced LIGO,” LIGO Document G1100232, 2011.

A. Chiummo, “Advanced Virgo stray light control status,” LIGO Document G1301021, 2013.

A. E. Siegman, Lasers. Univ. Science Books, Sausalito (CA), 1986.

A. Javier, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering, Marcel Dekker Inc., New York, 2003.

M. Born and E. Wolf, Principles of Optics. Cambridge Univ. Press, Cambridge (UK), 2002.

J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Amer., vol. 52, no. 2, pp. 116-130, 1962.

R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. of the IEEE, vol. 62, no. 11, pp. 1448-1461, 1974.

G. Pelosi, Y. Rahmat-Samii, and J. Volakis, Eds., “High-frequency techniques in diffraction theory: 50 years of achievements in GTD, PTD, and related approaches,” [Part I] IEEE Antennas Propag. Mag., APM-55 (3), pp. 16-58, June 2013; [Part II] IEEE Antennas Propag. Mag., APM-55 (4), pp. 17-79, Aug. 2013.

G. Pelosi and S. Selleri, “The wedge-type problem: The building brick in high-frequency scattering from complex objects,” IEEE Antennas and Propag. Mag., vol. APM-55 (3), pp. 41-58, 2013.

##submission.downloads##

已出版

2021-07-30

栏目

General Submission