Research on Terahertz Wave Reflection and Transmission of Carbon Nanotubes Slab Using FDTD

作者

  • Mao Y. Wang School of Physical Electronics University of Electronic Science and Technology of China, Cheng du, 610054, China
  • Hai L. Li School of Physical Electronics University of Electronic Science and Technology of China, Cheng du, 610054, China
  • Yu L. Dong School of Physical Electronics University of Electronic Science and Technology of China, Cheng du, 610054, China
  • Gui P. Li School of Physical Electronics University of Electronic Science and Technology of China, Cheng du, 610054, China
  • Cui L. Zhong Department of Electrical and Computer Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
  • Jun Xu School of Physical Electronics University of Electronic Science and Technology of China, Cheng du, 610054, China

关键词:

Auxiliary differential equation (ADE), carbon nanotubes, dispersive, finite-difference timedomain (FDTD), permittivity

摘要

Terahertz wave reflection and transmission of carbon nanotubes slab are investigated in this paper. The wave and current equations that describe characters of terahertz wave in dispersive carbon nanotubes (CNTs) are presented and discretized by using the auxiliary differential equation (ADE) in the finite-difference timedomain method (FDTD), because the permittivity of CNTs are frequency-dependent. The ADE-FDTD method and program’s efficiency is proved by the reference's analytical method. Numerical results show that the transmission coefficient of single wall carbon nanotubes (SWCNTs) does not show distinct peaks and dips at Terahertz frequency. The multiple transmitted pulses of silicon dioxide bi-covered with SWCNTs are observed. The electromagnetic interference (EMI) shielding effect of SWCNTs, double wall carbon nanotubes (DWCNTs) and Hydrogen doped CNTs are compared.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: present and future commercial applications,” Science, vol. 339, no. 6119, pp. 535-539, 2013.

X. Y. He and X. N. Fu, “Simulation investigation on optical and electrical properties of carbon nanotube in terahertz region,” Commun. Theor. Phys., vol. 51, no. 1, pp. 161-164, 2009.

E. Dadrasnia and H. Lamela, “Optical and electrical characterization of carbon nanotubes by terahertz spectroscopy: comparison between modeling and experimental results,” Proc. of SPIE, vol. 8096, no. 80963P, pp. 1-6, 2011.

I. Maeng, C. Kang, S. J. Oh, J. H. Sonb, K. H. An, and Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 90, no. 5, pp. 051914, 1-4, 2007.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B, vol. 75, no. 8, pp. 085410, 1-5, 2007.

Z. R. Wu, L. Wang, Y. T. Peng, A. Young, S. Seraphin, and H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” Journal of Applied Physics, vol. 103, no. 9, pp. 094324, 1-6, 2008.

J. Lloyd-Hughes and T. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” Journal of Infrared, Millimeter and Terahertz Waves, vol. 33, no. 9, pp. 871-925, 2012.

L. Ren, C. L. Pint, A. K. Wόjcik, T. Arikawa, Y. Takemoto, K. Takeya, I. Kawayama, A. A. Belyanin, M. Tonouchi, R. H. Hauge, and J. Kono, “Anisotropic terahertz dynamics of highly-aligned single-walled carbon nanotubes,” Terahertz Science and Technology, vol. 3, no. 1, pp. 26-32, 2010.

J. T. Hong, D. J. Park, J. Y. Moon, S. B. Choi, J. K. Park, F. Rotermund, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz wave applications of singlewalled carbon nanotube films with high shielding effectiveness,” Applied Physics Express, vol. 5, no. 1, pp. 015102, 1-3, 2012.

X. J. Feng, W. X. Huang, Y. Luo, J. Zhang, and Y. X. Zhang, “Terahertz spectroscopic investigation of MWNTs and MWNTS/Mica,” Chinese Journal of Sensors and Actuators, vol. 23, no. 4, pp. 453- 457, 2010.

W. Abdelli, X. Mininger, L. Pichon, and H. Trabelsi, “Impact of composite materials on the shielding effectiveness of enclosures,” The Applied Computational Electromagnetics Society, vol. 27, no. 4, pp. 369-375, 2012.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Applied Physics Letters, vol. 93, no. 23, pp. 231905, 1-3, 2008.

Y. Huang, N. Li, Y. F. Ma, F. Du, F. F. Li, X. B. He, X. Lin, H. J. Gao, and Y. S. Chen, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon, vol. 45, no. 8, pp. 1614-1621, 2007.

J. A. Berres and G. W. Hanson, “Multiwall carbon nanotubes at RF-THz frequencies: scattering, shielding, effective conductivity, and power dissipation,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 8, pp. 3098-3103, 2011.

A. I. Sotiropoulos, I. V. Plegas, S. Koulouridis, and H. T. Anastassiu, “Scattering properties of carbon nanotube arrays,” IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 1, pp. 110- 117, 2012.

M. Y. Wang, C. W. Qiu, J. Xu, Y. L. Dong, H. Zheng, and H. L. Li, “Mie series for electromagnetic scattering of chiral metamaterials sphere,” Journal of Systems Engineering and Electronics, vol. 22, no. 6, pp. 885-891, 2011.

M. Y. Wang, G. P. Li, M. Zhou, R. Wang, C. L. Zhong, J. Xu, and H. Zheng, “The effect of media parameters on wave propagation in a chiral metamaterials slab using FDTD,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 27, no. 1, pp. 109-121, 2014.

L. Hai, M. F. Pantoja, S. G. Garcia, A. R. Bretones, and R. G. Martin, “An FDTD thin-wire model for modeling carbon nanotube dipoles at THz regime,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 708-711, 2012.

L. Q. Li, Y. X. Shi, F. Wang, and B. Wei, “SOFDTD method of analyzing the reflection and transmission coefficient of weakly ionized dusty plasma layer,” Acta Phys. Sin., vol. 61, no. 12, pp. 125201, 1-5, 2012.

S. G. Zhou, H. L. Li, L. Y. Fu, and M. Y. Wang, “Preliminary study on active modulation of polar mesosphere summer echoes with the radio propagation in layered space dusty plasma,” Plasma Science and Technology, vol. 18, no. 6, pp. 607- 610, 2016.

A. Z. Elsherbeni and V. Demir, The FiniteDifference Time-Domain Method For Electromagnetics With MATLAB Simulations. SciTech Publishing, 2009.

M. Y. Wang, H. L. Li, D. L. Gao, L. Gao, J. Xu, and C. W. Qiu, “Radiation pressure of active dispersive chiral slabs,” Opt. Express, vol. 23, no. 13, pp. 16546-16553, 2015.

K. Han, P. Freeman, H. Y. Han, J. Hamar, and J. F. Stack Jr., “Finite-difference time-domain modeling of ultra-high frequency antennas on and inside the carbon fiber body of a solar-powered electric vehicle,” The Applied Computational Electromagnetics Society, vol. 29, no. 6, 2014.

D. B. Ge, Electromagnetic Wave Theory. Xidian University Press, Xian, 1997.

E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned singleand multiwalled carbon nanotubes,” Journal of Nanophotonics, vol. 8, no. 1, pp. 083099, 1-10, 2014.

K. S. Lee, T. M. Lu, and X. C. Zhang. “Tera tool terahertz time-domain spectroscopy is a highly sensitive optical tool for dielectric and optical property characterization of thin film at terahertz frequency,” IEEE Circuits & Devices Magazine, vol. 17, no. 5, pp. 23-28, 2002.

##submission.downloads##

已出版

2021-08-18

栏目

General Submission