Dynamical Chiral Metamaterial with Giant Optical Activity and Constant Chirality Over a Certain Frequency Band
关键词:
Dynamical chiral metamaterials, naturalsmall chirality, optical activity, wide band摘要
We demonstrate numerically and experimentally a dynamical chiral metamaterial that uniaxially creates giant optical activity and circular dichroism. In addition, the structure gives a high negative refractive index due to the large chirality. The proposed chiral metamaterial includes four L attached cross (FLAC) wire strips and offers a simple geometry, flexibility and more efficient results for chiral metamaterial applications such as polarization rotator, EM filter and so on. The experimental results are in a good agreement with the numerical simulation. It can be seen that FLAC wire strips based chiral metamaterial can also be used to achieve natural-small chirality with a constant value in a wide frequency range between 3.5- 4.5 GHz. This is also another crucial feature of the structure. Therefore, the proposed chiral metamaterial with constant chirality value can be used to design novel EM devices such as polarization converter, anti-reflection filters for a certain frequency range.
##plugins.generic.usageStats.downloads##
参考
J. S. Lih, J. S. Wang, M. C. Lu, Y. C. Huang, K. H. Chen, J. L. Chern, and L. E. Li, “Experimental realization of breaking diffraction limit by planar negative-index metamaterials in free space,” Europhys. Lett., vol. 69, pp. 544-549, 2005.
J. B. Pendry, “A chiral route to negative refraction,” Science, vol. 306, pp. 1353-1355, 2004.
S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl., vol. 17, pp. 695-706, 2003.
C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett., vol. 95, pp. 123904-123908, 2005.
S. Tretyakov, A. Sihvola, and L. Jylha, “Negative refractions and backward waves in biaxially anisotropic chiral media,” Phys. Condens. Matter., vol. 3, pp. 107-112, 2005.
V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” J. Phys. Condens. Matter., vol. 18, pp. 6883-6890, 2006.
Z. Shuang, P. Yong-Shik, L. Jensen, L. Xinchao, Z. Weili, and Z. Xiang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett., vol. 102, pp. 023901-023908, 2009.
F. Dincer, C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, “Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial,” Progress In Electromagnetics Research, vol. 140, pp. 227-239, 2013.
K. Delihacioglu and S. Uckun, “Power reflection and transmission coefficients for meander L line polarizers with chiral slab,” ETRI Journal, vol. 25, no. 1, pp. 41-48, 2003.
D. Zarifi, M. Soleimani, and V. Nayyeri, “Dualand multiband chiral metamaterial structures with strong optical activity and negative refraction,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 334-337, 2012.
C. Sabah and H. G. Roskos, “Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs,” Progress In Electromagnetics Research, vol. 124, pp. 301-314, 2012.
C. Sabah, “Multiband metamaterials based on multiple concentric open-ring resonators topology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, pp. 8500808, 2013.
F. Karadag and M. Karaaslan, “Artificial diamagnetic metamaterial loaded sub-wavelength waveguide with reduced bianisotropic effect: Design, fabrication and characterization,” Optoelectronics and Advanced Materials Rapid Communications, vol. 3, no. 6, pp. 574-7, 2009.
J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Physical Review B, vol. 79, pp. 121104, 2009.
M. Kuwata-Gonokami, et al., “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett., vol. 95, 227401, 2005.
K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B, vol. 89, 125105, 2014.
T. G. Mackay and A. Lakhtakia, “Plane waves with negative phase velocity in Faraday chiral mediums,” Phys. Rev. E, vol. 69, 026602, 2004.
N. L. Tsitsas, A. Lakhtakia, and D. J. Frantzeskakis, “Vector solitons in nonlinear isotropic chiral metamaterials,” J. Phys., vol. 44, 435203, 2011.
A. Lakhtakia, “Beltrami fields in chiral media,” World Scientific, Singapore, 1994.
C. Athanasiadis and N. L. Tsitsas, “Radiation relations for electromagnetic excitation of a layered chiral medium by an interior dipole,” J. Math. Phys., vol. 49, 013510, 2008.
B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Physical Review B, vol. 80, pp. 033108-4, 2009.
R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett., vol. 49, pp. 2606-9, 2007.
F Dincer, M Karaaslan, O Akgol, E Unal, E Demirel, and C Sabah, “New generation planar chiral metamaterials with small and constant chirality over a certain frequency band,” Modern Physics Letters B, vol. 29, no. 01, pp. 1450257, 2015.
J. D. Baena, L. Jelinek, and R. Marques, “Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B., vol. 76, pp. 245115, 2007.
C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Optical Engineering, vol. 54 no. 3, pp. 035106-035106, 2015.
R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: Retrieval of the effective parameters with and without substrate,” Optics Express, vol.
I. Comez, M. Karaaslan, F. Dincer, F. Karadag, and C. Sabah, “Systematic analysis on the optical properties of chiral metamaterial slab for microwave polarization control,” Applied Computational Electromagnetics Society Journal, vol. 30, no. 5, pp. 478-487, 2015.
Z. Wu, B. Q. Zhang, and S. Zhong, “A double-layer chiral metamaterial with negative,” J. Electromagn. Waves Appl., vol. 24, no. 7, pp. 983-992, 2010.
F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Flexible chiral metamaterials with dynamically optical activity and high negative refractive index,” Modern Physics Letters B, vol. 29, no. 18, pp. 1550087, 2015.
M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Chiral swiss rolls show a negative refractive index,” Journal of Physics: Condensed Matter, vol. 21, pp. 292201-5, 2009.
Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Applied Physics Letters, vol. 97, pp. 081901-3, 2010.
F. Dincer, M. Karaaslan, O. Akgol, E. Unal, and C. Sabah, “Dynamic and tunable chiral metamaterials with wideband constant chirality over a certain frequency band,” Optik-International Journal for Light and Electron Optics, vol. 126, no. 24, pp. 4808-4812, 2015.
R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Physical Review B, vol. 83, pp. 035105, 2011.
Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Applied Physics Letters, vol. 98, pp. 161907-3, 2011.
C. Sabah, F. Dincer, M. Karaaslan, O. Akgol, E. Demirel, and E. Unal, “New-generation chiral metamaterials based on rectangular split ring resonators with small and constant chirality over a certain frequency band,” IEEE Trans. Antennas Propagat., vol. 62, pp. 5745-5751, 2014.
F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Chiral metamaterial structures with strong optical activity and their applications,” Optical Engineering, vol. 53, 107101, 2014.