Hierarchical elements for the iterative solving of turbulent flow problems on anisotropic meshes

Authors

  • B.A. Wane Département de mathématiques et de statistique, Université Laval, GIREF, Pavillon Vachon, Québec, G1V 0A6, Canada
  • J.M. Urquizaa Département de mathématiques et de statistique, Université Laval, GIREF, Pavillon Vachon, Québec, G1V 0A6, Canada
  • A. Fortin Département de mathématiques et de statistique, Université Laval, GIREF, Pavillon Vachon, Québec, G1V 0A6, Canada
  • D. Pelletier Département de Génie Mécanique, École Polytechnique de Montréal, Montréal, (QC) H3C 3A7, Canada

DOI:

https://doi.org/10.13052/17797179.2012.702428

Keywords:

turbulent flows, hierarchical elements, iterative solvers, k –  turbulence model, logarithmic formulation, anisotropic mesh adaptation

Abstract

Accurate solution of industrial turbulent flow problems requires very fine meshes resulting in large systems of non-linear equations and huge computational costs. Efficient iterative methods are therefore necessary. Mesh adaptation, and in particular anisotropic mesh adaptation, allows to reduce considerably meshes size while preserving the accuracy of the solution. Unfortunately, iterative methods and anisotropic meshes do not come along easily and convergence problems may occur. In this work, we show how quadratic elements, expressed in a hierarchical basis, can be used to develop efficient iterative methods for the numerical simulation of turbulent flows on strongly anisotropic meshes.

Downloads

Download data is not yet available.

References

Ait Ali Yahia, D., Baruzzi, G., Habashi, W.G., Fortin, M., Dompierre, J., & Vallet, M.-G. (2002). Anisotropic

mesh adaptation: Towards user-independent, mesh-independent and solver independent CFD.

Part II Structured grids. International Journal for Numerical Methods in Fluids, 39, 657–673.

Alauzet, F., & Frey, P. (2003). Estimateur d’erreur géométrique et métriques anisotropes pour l’adaptation

de maillage. Partie I: aspects théoriques (Geometric error estimator and anisotropic metric for

mesh adaptation. Part I: theoretical aspects). (Technical Report No. 4759) INRIA.

Belhamadia, Y., Fortin, A., & Chamberland, É. (2004). Three-dimensional anisotropic mesh adaptation

for phase change problems. Journal of Computational Physics, 201(2), 753–770.

Chabard, J. (1991). Projet N3S de mécanique des fluides-manuel théorique de la version 3 (N3S project

for fluid mechanics: theoretical manual for version 3). (Technical Report n° EDF HE -41=91.30B),

Électricité de France.

Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., & Habashi, W.G. (2002). Anisotropic mesh

adaptation: Towards user-independent, mesh-independent and solver-independent CFD. Part III:

Unstructured meshes. International Journal for Numerical Methods in Fluids, 39, 675–702.

Eisenstat, S., Elman, H., & Schultz, M. (1983). Variational iterative methods for nonsymmetric systems

of linear equations. SIAM Journal on Numerical Analysis, 20, 345–357.

El maliki, A. (2007). Résolution de problèmes aux limites à l’aide de méthodes itératives hiérarchiques

à préconditionneur variable (Solution of boundary value problems using hierarchical iterative methods

with variable preconditioner) (PhD thesis, Département de mathématiques et de statistique, Université

Laval, Québec, Canada).

El maliki, A., & Guénette, R. (2010). Efficient preconditioning techniques for finite-element quadratic

discretization arising from linearized incompressible Navier–Stokes equations. International Journal

for Numerical Methods in Fluids, 63(12), 1394–1420.

El maliki, A., Guénette, R., & Fortin, M. (2011). An efficient hierarchical preconditioner for quadratic

discretizations of finite element problems. Numerical Linear Algebra with Applications, n/a n/a. Published

online.

Elman, H., Sylvester, D., & Wathen, A. (2005). Finite elements and fast iterative solvers with applications

in incompressible fluid dynamics. New York, NY: Numerical mathematics and scientific computation,

Oxford science.

Habashi, W.G., Dompierre, J., Bourgault, Y., Ait Ali Yahia, D., Fortin, M., & Vallet, M.-G. (2000). Anisotropic

mesh adaptation: Towards user-independent, mesh-independent and solverindependent CFD.

Part I: General principles. International Journal for Numerical Methods in Fluids, 32, 725–744.

Hecht, M., & Mohammadi, B. (1997). Mesh adaptation by metric control for multi-scale phenomena

and turbulence. 35th Aerospace Sciences Meeting & Exhibit, n° 97–0859, Reno, USA.

Hughes, T.J.R., & Brooks, A.N. (1979). A multidimensional upwind scheme with no crosswind diffusion,

vol. 34 of finite element methods for convection dominated flows. New York, NY: American Society

of Mechanical Engineers, 19–35.

Hughes, T.J.R., & Brooks, A.N. (1982). A theoretical framework for Petrov-Galerkin methods with discontinuous

weighting functions. Applications to the streamline upwind procedure. In R.H. Gallagher

(Ed.), Finite element in fluids, vol. IV, London: Wiley.

Ilinca, F., & Pelletier, D. (1998). Positivity preservation and adaptive solution for the k – ɛ turbulence

model. AIAA J., 36(1), 44–50.

Kim, J. (1978). Investigation of separation and reattachment of turbulent shear layer: Flow over a ackward

facing step (PhD thesis, Stanford University).

Kuzmin, D., & Mierka, O. (2006). On the implementation of the k – ɛ turbulence model in incompressible

flow solvers based on a finite element discretization. In Lude, Rapin (Eds.), BAIL 2006: International

conference on Boundary and Interior Layers, Göttingen: Georg-August University

Göttingen.

Lacasse, D. (2004). Application d’une méthode d’éléments finis adaptative à des écoulements turbulents

(Application of an adaptive finite element method to turbulent flows) (Master’s thesis, École Polytechnique

de Montréal, Montréal).

Lacasse, D., Turgeon, É., & Pelletier, D. (2004). On the judicious use of the k – ɛ model, wall functions

and adaptivity. International Journal of Thermal Sciences, 43(10), 925–938.

Launder, B.E., & Spalding, D.B. (1972). Mathematical models of turbulence. London: Academic Press.

Le, H., Moin, P., & Kim, J. (1997). Direct numerical simulation of turbulent flow over a backward-facing

step. Journal of Fluid Mechanics, 330, 349–374.

Lew, A.J., Buscaglia, G.C., & Carrica, P.M. (2001). A note on the numerical treatment of k – ɛ the turbulence

model. International Journal of Computational Fluid Dynamics, 14(3), 201–209.

Pelletier, D., Turgeon, É., & Borggaard, J. (2004). A general continuous sensibility equation formulation

for the k – ɛ formulation. International Journal of Computational Fluid Dynamics, 18(1), 29–46.

Pelletier, D., Zaki, A., & Fortin, A. (1994). Adaptive remeshing for hyperbolic transport problems. International

Journal of Computational Fluid Dynamics, 3(2), 79–99.

Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia, PA: SIAM.

Schetz, J.A. (1993). Boundary layer analysis. Upper Saddle River, NJ: Prentice Hall.

Verfürth, R. (1996). A review of a posteriori error estimation and adaptive mesh-refinement techniques.

Chichester: Advances in numerical mathematics, Wiley-Teubner.

White, F.M. (1974). Viscous flow. New York, NY: McGraw-Hill.

Zaki, A. (1993, July). Simulation numérique des problèmes de convection sur des maillages adaptatifs

non structurés du type h – p (PhD thesis, École Polytechnique de Montréal, Montréal, Canada).

Zhang, Z., & Naga, A. (2005). A new finite element gradient recovery method: Superconvergence property.

SIAM Journal on Scientific Computing, 26(4), 1192–1213.

Downloads

Published

2012-02-07

How to Cite

Wane, B., Urquizaa, J., Fortin, A., & Pelletier, D. (2012). Hierarchical elements for the iterative solving of turbulent flow problems on anisotropic meshes. European Journal of Computational Mechanics, 21(1-2), 22–39. https://doi.org/10.13052/17797179.2012.702428

Issue

Section

Original Article