High order optimal anisotropic mesh adaptation using hierarchical elements

Authors

  • R. Bois GIREF, Département de mathématiques et de statistique, Université Laval, Pavillon Vachon, 1045 avenue de la médecine, Québec, Canada, G1V 0A6
  • M Fortin GIREF, Département de mathématiques et de statistique, Université Laval, Pavillon Vachon, 1045 avenue de la médecine, Québec, Canada, G1V 0A6
  • A. Fortin GIREF, Département de mathématiques et de statistique, Université Laval, Pavillon Vachon, 1045 avenue de la médecine, Québec, Canada, G1V 0A6
  • A Couët GIREF, Département de mathématiques et de statistique, Université Laval, Pavillon Vachon, 1045 avenue de la médecine, Québec, Canada, G1V 0A6

DOI:

https://doi.org/10.13052/17797179.2012.702431

Keywords:

hierarchical elements;, optimal mesh, high order solutions;, anisotropy, hierarchical error estimator, gradient recovery

Abstract

Anisotropic mesh adaptation has made spectacular progress in the past few years. The introduction of the notion of a metric, directly linked to the interpolation error, has allowed to control the elongation of elements as well as the discretisation error. This approach is however essentially restricted to linear (P(1)) finite element solutions, though there exists some generalisations. A completely general approach leading to optimal meshes and this, for finite element solution of any degree, is still missing. This is precisely the goal of this work where we show how to estimate the error on a finite element solution of degree k using hierarchical basis for Lagrange finite element polynomials. We then show how to use this information to produce optimal anisotropic meshes in a sense that will be precised.

Downloads

Download data is not yet available.

References

Alauzet, F. (2008). High-order methods and mesh adaptation for Euler equations. International Journal

for Numerical Methods in Fluids, 56(8), 1069–1076.

Alauzet, F., & Frey, P. (2003). Estimateur d’erreur géométrique et métriques anisotropes pour l’adaptation

de maillage. Partie I: aspects théoriques. Technical Report n° 4759, INRIA.

Amestoy, P.R., Duff, I.S., & L’Excellent, J.-Y. (2000). Multifrontal parallel distributed symmetric and

unsymmetric solvers. Computer Methods in Applied Mechanics and Engineering, 184(2–4), 501–520.

Babuska, I., & Rheinboldt, W.C. (1978). A-posteriori error estimates for the finite element method.

International Journal for Numerical Methods in Engineering, 12, 1597–1615.

Bank, R.E., & Smith, R.K. (1993). A posteriori error estimates based on hierarchical bases. SIAM Journal

on Numerical Analysis, 30(4), 921–935.

Bois, R., Fortin, M., & Fortin, A. (2012). A fully optimal anisotropic mesh adaptation method based on

a hierarchical error estimator. Computer Methods in Applied Mechanics and Engineering, 209–212,

–27.

Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods, vol. 15 of Springer series in

computational mathematics. New York, NY: Springer-Verlag.

D’Azevedo, E.F., & Simpson, R.B. (1991). On optimal triangular meshes for minimizing the gradient

error. Numerische Mathematik, 59(1), 321–348.

El maliki, A. (2007). Résolution de problèmes aux limites à l’aide de méthodes itératives hiérarchiques

à préconditionneur variable. PhD thesis, Département de mathématiques et de statistique, Université

Laval, Québec, Canada.

El maliki, A., Guénette, R., & Fortin, M. (2011). An efficient hierarchical preconditioner for quadratic

discretisations of finite element problems. Numerical Linear Algebra with Applications. n/a-n/ a.

Published online.

Engelman, M., & Jamnia, M. (1990). Transient flow past a circular cylinder: A benchmark solution.

International Journal for Numerical Methods in Fluids, 11, 985–1000.

Formaggia, L., & Perotto, S. (2003). Anisotropic error estimates for elliptic problems. Numerische Mathematik,

, 67–92. doi: 10.1007/s00211-002-0415-z.

George, P.-L. (Ed.). (2001). Maillage et adaptation, Mécanique et ingénierie des matériaux. Paris: Hermès

Science Publication.

Habashi, W.G., Dompierre, J., Bourgault, Y., Ait Ali Yahia, D., Fortin, M., & Vallet, M.-G. (2000). Anisotropic

mesh adaptation: Towards user-independent, mesh-independent and solverindependent CFD.

Part I: General principles. International Journal for Numerical Methods in Fluids, 32, 725–744.

Hecht, M., & Mohammadi, B. (1997). Mesh adaptation by metric control for multi-scale phenomena

and turbulence. In 35th Aerospace Sciences Meeting & Exhibit, n° 97-0859, Reno, USA.

Huang, W., Kamenski, L., & Lang, J. (2010). A new anisotropic mesh adaptation method based

upon hierarchical a posteriori error estimates. Journal of Computational Physics, 229(6), 2179–2198.

Kunert, G. (2000). An a posteriori residual error estimator for the finite element method on anisotropic

tetrahedral meshes. Numerische Mathematik, 86, 471–490.

Lagüe, J.-F. (2006). Adaptation de maillage basée sur une erreur d’interpolation locale. PhD thesis,

Université Pierre et Marie Curie, Paris VI.

Manole, C., Vallet, M.-G., Dompierre, J., & Guibault, F. (2005). Benchmarking second-order derivatives

recovery of a piecewise linear scalar field. In Proceedings of the 17th IMACS World Congress Scientific

Computation, Applied Mathematics and, Simulation, 11–15 July 2005, Paris, France: Villeneuve

d'Ascq, France, Ecole Centrale de Lille.

Micheletti, S., & Perotto, S. (2006). Reliability and efficiency of an anisotropic Zienkiewicz–Zhu

error estimator. Computer Methods in Applied Mechanics and Engineering, 195(9–12),

–835.

Ndikumagenge, F. (2001). Estimateur d’erreur a posteriori basé sur une méthode hiérarchique et adaptation

de maillage. Master’s thesis, Université Laval, Québec, Canada.

Pagnutti, D., & Ollivier-Gooch, C. (2009). A generalized framework for high order anisotropic mesh

adaptation. Computers & Structures, 87, 670–679.

Picasso, M. (2002). An anisotropic error indicator based on Zienkiewicz–Zhu error estimator:

Application to elliptic and parabolic problems. SIAM Journal on Numerical Analysis, 24, 1328–

Roache, P.J. (2002). Code verification by the method of manufactured solutions. ASME Journal of Fluids

Engineering, 124(1), 4–10.

Verfürth, R. (1994). A posteriori error estimation and adaptive mesh-refinement techniques. Journal of

Computational and Applied Mathematics, 50(1–3), 67–83.

Verfürth, R. (1996). A review of a posteriori error estimation and adaptive mesh-refinement techniques

of Advances in numerical mathematics. Chichester: Wiley-Teubner.

Weisstein, E.W. (2010). Cubic curve. Retrieved from MathWorld–A Wolfram Web, Resource.

Zaki, A. (1993). Simulation numérique des problèmes de convection sur des maillages adaptatifs non

structurés du type h–p. PhD thesis, École Polytechnique de Montréal, Montréal, Canada, July.

Zhang, Z., & Naga, A. (2005). A new finite element gradient recovery method: Superconvergence property.

SIAM Journal on Numerical Analysis, 26(4), 1192–1213.

Zienkiewicz, O.C., & Zhu, J.Z. (1992a). The superconvergent patch recovery and a posteriori error estimate,

part I: The recovery technique. International Journal for Numerical Methods in Fluids, 33,

–1364.

Zienkiewicz, O.C., & Zhu, J.Z. (1992b). The superconvergent patch recovery and a posteriori error estimate,

part II: Error estimates and adaptivity. International Journal for Numerical Methods in Fluids,

, 1365–1382.

Downloads

Published

2012-04-01

How to Cite

Bois, R. ., Fortin, M., Fortin, A., & Couët, A. (2012). High order optimal anisotropic mesh adaptation using hierarchical elements. European Journal of Computational Mechanics, 21(1-2), 72–91. https://doi.org/10.13052/17797179.2012.702431

Issue

Section

Original Article