A robust data completion method for two dimensional Cauchy problems associated with the Laplace equation

Authors

  • Franck Delvare Laboratoire PRISME, ENSI de Bourges 88, Boulevard Lahitolle, F-18020 Bourges cedex
  • Alain Cimetière Institut Pprime, CNRS-ENSMA-Université de Poitiers, UPR 3346 Boulevard Marie et Pierre Curie, BP 30179 F-86962 Chasseneuil Futuroscope cedex

DOI:

https://doi.org/10.13052/EJCM.20.309-340

Keywords:

Cauchy problems, inverse problems, data completion, Laplace equation, regularization.

Abstract

Our aim is to propose an improved regularization method for data completion problems. This method is presented on the Cauchy problem for the Laplace equation in 2D situations. This method is an iterative one, uses a regularization with fading effect and penalization terms which take into account the fact that, under some regularity assumptions, the partial derivatives of a harmonic function is also harmonic. Many numerical simulations using the finite element method highlight the efficiency, accuracy, stability when data are noisy and the ability of the method to take into account and deblur noisy data.

Downloads

Download data is not yet available.

References

Andrieux S., Baranger T. N., Ben Abda A., “Solving Cauchy problems by minimizing an

energy-like functional”, Inverse Problems, vol. 22, p. 115-133, 2006.

Bourgeois L., “A mixed formulation of quasi-reversibility to solve the Cauchy problem for the

Laplace equation”, Inverse Problems, vol. 21, p. 1087-1104, 2005.

CASTEM2000, Code de calcul pour l’analyse de structures par la méthode des éléments finis.

Guide d’utilisation., Commissariat l’Energie Atomique, DEN/DM2S/SEMT/LM2S, 1998.

Chen K. H., Kao J. H., Chen J. T., Wu K. L., “Desingularized meshless method for solving

Laplace equation with over-specified boundary conditions using regularization techniques”,

Computational Mechanics, vol. 43, p. 827-837, 2009.

Cimetière A., Delvare F., Jaoua M., Pons F., “Solution of the Cauchy problem using iterated

Tikhonov regularization”, Inverse Problems, vol. 17, n° 3, p. 553-570, 2001.

Cimetière A., Delvare F., Jaoua M., Pons F., “An inversion method for harmonic functions

reconstruction”, International Journal of Thermal Sciences, vol. 41, p. 509-516, 2002.

Cimetière A., Delvare F., Pons F., “Une méthode inverse avec régularisation évanescente”, C.R.

Acad. Sci. Paris Tome IIb, vol. 328, p. 639-644, 2000.

Cimetière A., Delvare F., Pons F., “Une methode inverse d’ordre un pour les problèmes de

complétion de données”, Comptes Rendus Mécanique, vol. 333, p. 123-126, 2005.

Delvare F., Cimetière A., “A first order method for the Cauchy problem for the Laplace equation

using BEM”, Computational Mechanics, vol. 41, p. 789-796, 2008.

Delvare F., Cimetière A., Hanus J. L., Bailly P., “An iterative method for the Cauchy problem

in linear elasticity with fading regularization effect”, Comput. Methods Appl. Mech. Engrg,

vol. 199, p. 3336-3344, 2010.

Delvare F., Cimetière A., Pons F., “An iterative boundary element method for Cauchy inverse

problems”, Computational Mechanics, vol. 28, p. 291-302, 2002.

Engl H. W., Hanke M., Neubauer A., Regularization of Inverse problems, Kluwer Academic

Publishers, Dordrecht, 1996.

Hadamard J., Lectures on Cauchy’s problem in linear partial differential equations, Yale University

Press, New Haven, 1923.

Hao D. N., Lesnic D., “The Cauchy problem for the Laplace’s equation via the conjugate gradient

method”, IMA Journal of Applied Mathematics, vol. 65, p. 199-217, 2000.

Hayashi K., Ohura Y., Onishi K., “Direct method of solution for general boundary value problem

of the Laplace equation”, Engineering Analysis with Boundary Elements, vol. 26,

p. 763-771, 2002.

Jourhmane M., Lesnic D., Mera N. S., “Relaxation procedures for an iterative algorithm for

solving the cauchy problem for the laplace equation.”, Engineering Analysis with Boundary

Elements, vol. 28, p. 655-665, 2004.

Klibanov M. V.and F. Santosa F., “A computational quasi-reversibility method for Cauchy problems

for Laplace’s equation”, SIAM Journal of Applied Mathematics, vol. 51, p. 1653-1675,

Kozlov V. A., Maz’ya V. G., Fomin A. F., “An iterative method for solving the Cauchy problem

for elliptic equations”, Comput. Math. Phys., vol. 31, n° 1, p. 45-52, 1991.

Lattès R., Lions J.-L., Méthode de quasi-réversibilité et applications, Dunod, Paris, 1967.

Lesnic D., Elliott L., Ingham D. B., “An iterative boundary element method for solving the

Cauchy problem for the Laplace equation”, Engineering Analysis with Boundary Elements,

vol. 20, p. 123-133, 1997.

Marin L., “Numerical solution of the Cauchy problem for steady-state heat transfer in twodimensional

functionally graded materials”, International Journal of Solids and Structures,

vol. 42, p. 4338-4358, 2005.

Marin L., “An alternating iterative MFS algorithm for the Cauchy problem in two-dimensional

anisotropic heat conduction”, Computers, Materials & Continua, vol. 12, p. 71-100, 2009a.

Marin L., “An iterative MFS algorithm for the Cauchy problem associated with the Laplace

equation”, Computer Modeling in Engineering & Sciences, vol. 48, p. 121-152, 2009b.

Marin L., “Relaxation procedures for an iterative MFS algorithm for two-dimensional steadystate

isotropic heat conduction Cauchy problems”, Engineering Analysis with Boundary

Elements, vol. 35, p. 415-429, 2011.

Tikhonov A. N., Arsenin V. Y., Solution of ill-posed problems, John Wiley and Sons, New York,

Downloads

Published

2011-06-05

How to Cite

Delvare, F. ., & Cimetière, A. . (2011). A robust data completion method for two dimensional Cauchy problems associated with the Laplace equation. European Journal of Computational Mechanics, 20(5-6), 309–340. https://doi.org/10.13052/EJCM.20.309-340

Issue

Section

Original Article

Most read articles by the same author(s)