A robust data completion method for two dimensional Cauchy problems associated with the Laplace equation
DOI:
https://doi.org/10.13052/EJCM.20.309-340Keywords:
Cauchy problems, inverse problems, data completion, Laplace equation, regularization.Abstract
Our aim is to propose an improved regularization method for data completion problems. This method is presented on the Cauchy problem for the Laplace equation in 2D situations. This method is an iterative one, uses a regularization with fading effect and penalization terms which take into account the fact that, under some regularity assumptions, the partial derivatives of a harmonic function is also harmonic. Many numerical simulations using the finite element method highlight the efficiency, accuracy, stability when data are noisy and the ability of the method to take into account and deblur noisy data.
Downloads
References
Andrieux S., Baranger T. N., Ben Abda A., “Solving Cauchy problems by minimizing an
energy-like functional”, Inverse Problems, vol. 22, p. 115-133, 2006.
Bourgeois L., “A mixed formulation of quasi-reversibility to solve the Cauchy problem for the
Laplace equation”, Inverse Problems, vol. 21, p. 1087-1104, 2005.
CASTEM2000, Code de calcul pour l’analyse de structures par la méthode des éléments finis.
Guide d’utilisation., Commissariat l’Energie Atomique, DEN/DM2S/SEMT/LM2S, 1998.
Chen K. H., Kao J. H., Chen J. T., Wu K. L., “Desingularized meshless method for solving
Laplace equation with over-specified boundary conditions using regularization techniques”,
Computational Mechanics, vol. 43, p. 827-837, 2009.
Cimetière A., Delvare F., Jaoua M., Pons F., “Solution of the Cauchy problem using iterated
Tikhonov regularization”, Inverse Problems, vol. 17, n° 3, p. 553-570, 2001.
Cimetière A., Delvare F., Jaoua M., Pons F., “An inversion method for harmonic functions
reconstruction”, International Journal of Thermal Sciences, vol. 41, p. 509-516, 2002.
Cimetière A., Delvare F., Pons F., “Une méthode inverse avec régularisation évanescente”, C.R.
Acad. Sci. Paris Tome IIb, vol. 328, p. 639-644, 2000.
Cimetière A., Delvare F., Pons F., “Une methode inverse d’ordre un pour les problèmes de
complétion de données”, Comptes Rendus Mécanique, vol. 333, p. 123-126, 2005.
Delvare F., Cimetière A., “A first order method for the Cauchy problem for the Laplace equation
using BEM”, Computational Mechanics, vol. 41, p. 789-796, 2008.
Delvare F., Cimetière A., Hanus J. L., Bailly P., “An iterative method for the Cauchy problem
in linear elasticity with fading regularization effect”, Comput. Methods Appl. Mech. Engrg,
vol. 199, p. 3336-3344, 2010.
Delvare F., Cimetière A., Pons F., “An iterative boundary element method for Cauchy inverse
problems”, Computational Mechanics, vol. 28, p. 291-302, 2002.
Engl H. W., Hanke M., Neubauer A., Regularization of Inverse problems, Kluwer Academic
Publishers, Dordrecht, 1996.
Hadamard J., Lectures on Cauchy’s problem in linear partial differential equations, Yale University
Press, New Haven, 1923.
Hao D. N., Lesnic D., “The Cauchy problem for the Laplace’s equation via the conjugate gradient
method”, IMA Journal of Applied Mathematics, vol. 65, p. 199-217, 2000.
Hayashi K., Ohura Y., Onishi K., “Direct method of solution for general boundary value problem
of the Laplace equation”, Engineering Analysis with Boundary Elements, vol. 26,
p. 763-771, 2002.
Jourhmane M., Lesnic D., Mera N. S., “Relaxation procedures for an iterative algorithm for
solving the cauchy problem for the laplace equation.”, Engineering Analysis with Boundary
Elements, vol. 28, p. 655-665, 2004.
Klibanov M. V.and F. Santosa F., “A computational quasi-reversibility method for Cauchy problems
for Laplace’s equation”, SIAM Journal of Applied Mathematics, vol. 51, p. 1653-1675,
Kozlov V. A., Maz’ya V. G., Fomin A. F., “An iterative method for solving the Cauchy problem
for elliptic equations”, Comput. Math. Phys., vol. 31, n° 1, p. 45-52, 1991.
Lattès R., Lions J.-L., Méthode de quasi-réversibilité et applications, Dunod, Paris, 1967.
Lesnic D., Elliott L., Ingham D. B., “An iterative boundary element method for solving the
Cauchy problem for the Laplace equation”, Engineering Analysis with Boundary Elements,
vol. 20, p. 123-133, 1997.
Marin L., “Numerical solution of the Cauchy problem for steady-state heat transfer in twodimensional
functionally graded materials”, International Journal of Solids and Structures,
vol. 42, p. 4338-4358, 2005.
Marin L., “An alternating iterative MFS algorithm for the Cauchy problem in two-dimensional
anisotropic heat conduction”, Computers, Materials & Continua, vol. 12, p. 71-100, 2009a.
Marin L., “An iterative MFS algorithm for the Cauchy problem associated with the Laplace
equation”, Computer Modeling in Engineering & Sciences, vol. 48, p. 121-152, 2009b.
Marin L., “Relaxation procedures for an iterative MFS algorithm for two-dimensional steadystate
isotropic heat conduction Cauchy problems”, Engineering Analysis with Boundary
Elements, vol. 35, p. 415-429, 2011.
Tikhonov A. N., Arsenin V. Y., Solution of ill-posed problems, John Wiley and Sons, New York,