RPCM: a strategy to perform reliability analysis using polynomial chaos and resampling
Application to fatigue design
DOI:
https://doi.org/10.13052/EJCM.19.795-830Keywords:
Bootstrap, confidence intervals, reliability analysis, polynomial chaos, fatigueAbstract
Using stochastic finite elements, the response quantity can be written as a series expansion which allows an approximation of the limit state function. For computational purpose, the series must be truncated in order to retain only a finite number of terms. In the context of reliability analysis, we propose a new approach coupling polynomial chaos expansions and confidence intervals on the generalized reliability index as truncating criterion.
Downloads
References
Berveiller M., Sudret B., Lemaire M., “ Stochastic finite element - a non intrusive approach
by regression”, European Journal of Computational Mechanics, vol. 15, n° 1-3, p. 81-92,
Bigerelle M., Najjar D., Fournier B., Rupin N., Iost A., “ Application of Lambda Distributions
and Bootstrap analysis to the prediction of fatigue lifetime and confidence intervals”,
International Journal of Fatigue, vol. 28, p. 223-236, 2006.
Blatman G., Sudret B., “ Sparse polynomial chaos expansions and adaptive stochastic finite
elements using a regression approach”, Comptes Rendus Mécanique, vol. 336, n° 6, p. 518-
, 2008.
Blatman G., Sudret B., “ An adaptive algorithm to build up sparse polynomial chaos expansions
for stochastic finite element analysis”, Probabilistic Engineering Mechanics, vol. 25, n° 2,
p. 183-197, 2010.
Blatman G., Sudret B., Berveiller M., “ Quasi random numbers in stochastic finite element
analysis”, Mécanique et Industries, vol. 8, n° 3, p. 289-297, 2007.
Carroll R., Ruppert D., Transformation andWeighting in Regression, Chapman Hall, New York,
Cheng J., Li Q. S., Xiao R. C., “ A new artificial neural network-based response surface method
for structural reliability analysis”, Probabilistic Engineering Mechanics, vol. 23, n° 1, p. 51-
, 2008.
Choi S., Grandhi R., Canfield R., “ Structural reliability under non-gaussian stochastic behaviour”,
Computers and Structures, vol. 82, p. 1113-1121, 2004a.
Choi S., Grandhi R., Canfield R., Pettit C., “ Polynomial Chaos Expansion with Latin Hypercube
Sampling for Estimating Response Variability”, AIAA, vol. 42, n° 6, p. 1191-1198,
b.
DangVan K., Griveau B., Message O., “ On a new multiaxial fatigue criterion: theory and application.
Biaxial and Multiaxial Fatigue”, in M. Brown, K.J.Miller (eds), EFG 3, Mechanical
Engineering Publications, London, p. 479-496, 1989.
Deheeger F., Lemaire M., “ Support vector machine for efficient subset simulations: 2SMART
method”, in J. Kanda, T. Takada, H. Furuta (eds), 10th International Conference on Application
of Statistics and Probability in Civil Engineering, Proceedings and Monographs in
Engineering, Water and Earth Sciences, Taylor & Francis, p. 259-260, 2007.
DiCiccio T. J., Efron B., “ Bootstrap confidence intervals”, Statistical Science, vol. 11, n° 3,
p. 189-228, 1996.
Ditlevsen O., Madsen H., Structural reliability Methods, Wiley, Chichester, UK, 2007. Edition
3.7: Internet edition.
Echard B., Gayton N., Lemaire M., “ Reliability assessment of structures subjected to fatigue
failure using kriging methods”, Fatigue Design 2009, Senlis, France, 2009.
Echard B., Gayton N., Lemaire M., “ Structural Reliability Assessment using Kriging metamodel
and Monte Carlo simulation: AK-MCS method”, IFIP WG7.5, Taylor & Francis,
Efron B., “ Bootstrap methods: Another look at the jackknife”, The Annals of Statistics, vol. 7,
p. 1-26, 1979.
Efron B., Tibshirani R. J., An introduction to the bootstrap, Chapman Hall, New York, 1993.
Elhewy A. H., Mesbahi E., Pu Y., “ Reliability analysis of structures using neural network
method”, Probabilistic Engineering Mechanics, vol. 21, n° 1, p. 44-53, 2006.
Field R., “ Numerical methods to estimate the coefficients of the polynomial chaos expansion”,
Proc. 15th ASCE Engineering Mechanics Conference, New York, USA, 2002.
Field R., Grigoriu M., “ On the accuracy of the polynomial approximation”, Probabilistic Engineering
Mechanics, vol. 19, p. 65-80, 2004.
Gayton N., Bourinet J., Lemaire M., “ CQ2RS: a new statistical approach to the response surface
method for reliability analysis”, Structural Safety, vol. 25, p. 99-121, 2003.
Gayton N., Lemaire M., “ Reliability assessment of structures subjected to fatigue failure”,
Ships and offshore structures, vol. 4, n° 3, p. 229-239, 2009.
Ghanem R., Spanos P., Stochastic finite elements: a spectral approach, Springer-Verlag, New
York, 1991. Revised Edition published by Dover in 2003.
Giunta A. A., Watson L. T., A Comparison of Approximation Modeling Techniques: Polynomial
Versus Interpolating Models, Technical report, 1998.
Heiermann K., Riesch-Oppermann H., Huber N., “ Reliability confidence intervals for ceramic
components as obtained from bootstrap methods and neural networks”, Computational Materials
Science, vol. 34, n° 1, p. 1-13, 2005.
Hesterberg T., Bootstrap, Technical report, Insightful Corp, 2007.
Hurtado J. E., “ Filtered importance sampling with support vector margin: a powerful method
for structural reliability analysis”, Structural Safety, vol. 29, p. 2-15, 2007.
Isukapalli S., Uncertainty analysis of transport-transformation models, PhD thesis, The State
University of New Jersey, 1999.
Kaymaz I., “ Application of kriging method to structural reliability problems”, Structural
Safety, vol. 27, n° 2, p. 133-151, 2005.
Keese A., Numerical Solution of Systems with Stochastic Uncertainties: A General Purpose
Framework for Stochastic Finite Elements, PhD thesis, Technischen Universität Braunschweig,
Lemaire M., Structural Reliability - Static Mechanical coupling, ISTE, 2009.
Lemaire M., Pendola M., “ Phimeca Soft”, Structural Safety, vol. 28, p. 130-149, 2006.
LeMaître O., Reagan M., Najm H., Ghanem R., Knio O., “ A Stochastic Projection Method for
Fluid Flow II. Random Process”, Journal of Computational Physics, vol. 181, n° 1, p. 9-44,
Li G., Liu Z., “ Surrogate-based Reliability Analysis Using Support Vector Machine”, AIP
Conference Proceedings, vol. 1233, n° 1, p. 893-898, 2010.
Liu Y., Mahedevan S., “ Stochastic fatigue damage modeling under variable amplitude loading”,
International Journal of Fatigue, vol. 29, p. 1149-1161, 2007.
Malliavin P., Stochastic analysis, Springer, 1997.
Marrel A., Iooss B., Laurent B., Roustant O., “ Calculations of Sobol indices for the Gaussian
process metamodel”, Reliability Engineering and System Safety, vol. 94, p. 742-751, 2009.
McKay M. D., Beckman R. J., Conover W. J., “ A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code”, Technometrics,
vol. 42, n° 1, p. 55-61, 2000.
Novak D., Lawanwisut W., Bucher C., “ Simulation of Random Fields Based on Orthogonal
Transformations of Covariance Matrix and Latin Hypercube Sampling”, in G. Schuëller,
P. Spanos, A. D. Kiureghian, M. Pestana (eds), International conference on Monte Carlo
simulations, Swets & Zeitlinger, p. 129-136, 2001.
Olsson A. M. J., Sandberg G. E., “ Latin Hypercube Sampling for Stochastic Finite Element
Analysis”, Journal of Engineering Mechanics, vol. 128, n° 1, p. 121-125, 2002.
Papadrakakis M., Papadopoulos V., Lagaros N. D., “ Structural reliability analysis of elasticplastic
structures using neural networks and Monte Carlo simulation”, Computer Methods
in Applied Mechanics and Engineering, vol. 136, p. 145-163, 1996.
Pellissetti M., Schuëller G., “ On general purpose software in structural reliability - An
overview”, Structural Safety, vol. 28, p. 3-16, 2006.
Puig B., Poirion F., Soize C., “ Non-Gaussian simulation using Hermite polynomial expansion:
convergences”, Prob. Engr. Mech., vol. 17, p. 253-264, 2002.
Rajashekhar M. R., Ellingwood B. R., “ A new look at the response surface approach for reliability
analysis”, Structural Safety, vol. 12, n° 3, p. 205-220, 1993.
Reh S., Beley J., Mukherjee S., Khor E., “ Probabilistic finite element using ANSYS”, Structural
Safety, vol. 28, p. 17-43, 2006.
Rocco C. M., Moreno J. A., “ Fast Monte Carlo reliability evaluation using support vector
machine”, Reliability Engineering & System Safety, vol. 76, n° 3, p. 237-243, 2002.
Ryan T., Modern Regression Methods, Wiley, New York, 1997.
Sain T., Chandra-Kishen J., “ Probabilistic assessment of fatigue crack growth in concrete”,
International Journal of Fatigue, vol. 30, p. 2156-2164, 2008.
Shawe-Taylor J., Cristianini N., Support Vector Machines and other kernel-based learning
methods, Cambridge University Press, 2000.
Soize C., Ghanem R., “ Physical systems with random uncertainties: chaos representations
with arbitrary probability measure”, SIAM Journal on Scientific Computing, vol. 26, n° 2,
p. 395-410, 2004.
Sudret B., “ Global sensitivity analysis using polynomial chaos expansion”, Reliability Engineering
& System Safety, vol. 93, n° 7, p. 964-979, 2008.
Sudret B., Kiureghian A. D., “ Comparison of finite element reliability methods”, Probabilistic
Engineering Mechanics, vol. 17, p. 337-348, 2002.
Walz G., Riesch-Oppermann H., “ Probabilistic fracture mechanics assessment of flaws in turbine
disks including quality assurance procedures”, Structural Safety, vol. 28, p. 273-288,
Wiener N., “ The homogeneous chaos”, American Journal of Mathematics, vol. 60, p. 897-936,
Xiu D., Karniadakis G., “ The Wiener-Askey polynomial chaos for stochastic differential equations”,
SIAM Journal of Scientific Computing, vol. 24, p. 619-644, 2002.
Zheng Y., Das P. K., “ Improved response surface method and its application to stiffened plate
reliability analysis”, Engineering Structures, 2000.