An Introduction to Moving Least Squares Meshfree Methods

Authors

  • Piotr Breitkopf Laboratoire de Mécanique Roberval, UMR UTC-CNRS Université de Technologie de Compiègne BP 20529, F-60205 Compiègne cedex
  • Alain Rassineux Laboratoire de Mécanique Roberval, UMR UTC-CNRS Université de Technologie de Compiègne BP 20529, F-60205 Compiègne cedex
  • Pierre Villon Laboratoire de Mécanique Roberval, UMR UTC-CNRS Université de Technologie de Compiègne BP 20529, F-60205 Compiègne cedex

Keywords:

Meshfree Methods, Meshless Methods, Moving Least Squares, Diffuse Elements

Abstract

We deal here with some fundamental aspects of a category of meshfree methods based on Moving Least Squares (MLS) approximation and interpolation. These include EFG, RKPM and Diffuse Elements. In this introductory text, we discuss different formulations of the MLS from the point of view of numerical precision and stability. We talk about the issues of both “diffuse” and “full” derivation and we give proof of convergence of both approaches. We propose different algorithms for the computation of MLS based shape functions and we give their explicit forms in 1D, 2D and 3D. The topics of weight functions, the interpolation property with or without singular weights, the domain decomposition and the numerical integration are also discussed. We formulate the integration constraint, necessary for a method to satisfy the linear patch test. Finally, we develop a custom integration scheme, which satisfies this integration constraint.

Downloads

Download data is not yet available.

References

Babuska I., Banerjee U., Osborn J.E., Meshless and generalized finite element methods: a

survey of some major results, TICAM Report 02-03, University of Texas at Austin,

January 2002.

Babuska I., Melenk J. M., “The Partition of Unity Method”, International Journal for

Numerical Methods in Engineering, 40, 727-758, 1997.

Barnhill, R.E., Representation and approximation of surfaces in Mathematical Software, ed.

J.R. Rice, Academic Press, New York, 69-120, 1977.

Beissel S., Belytschko T., “Nodal Integration of the Element-Free Galerkin Method”,

Computer Methods in Applied Mechanics and Engineering, 139, 49-74, 1996.

Belytschko T., Krongauz Y., Organ D., Fleming M., and Krysl P., “Meshless Methods: An

Overview and Recent Developments”, Computer Methods in Applied Mechanics and

Engineering, 139, 3-47, 1996.

Belytschko T., Lu Y.Y., Gu L., “Element-free Galerkin Methods”, International Journal for

Numerical Methods in Engineering, 37, 229-256, 1994.

Belytschko T., Gu L., Lu. Y. Y., “Fracture and crack growth by element-free Galerkin

methods. Modelling and Simulation”, Material Science and Engineering, 2, 519-534,

(a).

Bonet J., Lok T.-S. L., “Variational and momentum preservation aspects of smooth particle

hydrodynamics formulation”, Computer Methods in Applied Mechanics and Engineering,

, 97-115, 1999.

Breitkopf P., Rassineux A., Touzot G., Villon P., “Explicit form and efficient computation of

MLS shape functions and their derivatives”, International Journal for Numerical Methods

in Engineering, 48, 451-456, 2000.

Breitkopf P., Rassineux A., Villon P., Saannouni K., Cherouat H., “Meshfree operators for

consistent field transfer in large deformation plasticity”, ECCOMAS-ECCM-2001,

Cracow, Poland, 26-29 June 2001.

Breitkopf P., Touzot G., Villon P., “Double Grid Diffuse Collocation Method”,

Computational Mechanics, 25, No 2/3, 199-206, 2000.

Chen J-S, Han W., You Y., Meng X., “A Reproducing Kernel Method with Nodal

Interpolation Property”, International Journal for Numerical Methods in Engineering, in

press, 2002.

Chen J. S., Wu C. T., Yoon S., You Y., “Nonlinear Version of Stabilized Conforming Nodal

Integration for Galerkin Meshfree Methods”, International Journal for Numerical

Methods in Engineering, 53, 2587-2615, 2002.

Cleveland, W.S., “Robust Locally Weighted Regression and Smoothing Scatterplots”,

Journal of the American Statistical Association, December, Vol, 74, No. 368, 829-836,

De S., Bathe K.J., “The Method of Finite Spheres”, Computational Mechanics, 25, 329-345,

Dolbow J., Belytschko T., “Numerical integration of the Galerkin weak form in meshfree

methods”, Computational Mechanics, 23(3), 219-230, 1999.

Gordon William J., Wixom James A., “Shepard's method of metric interpolation to bivariate

and multivariate interpolation”, Math. Comp. 32(141), 253-264, 1978.

Huerta A., Vidal Y., Villon P., “Locking in the Incompressible Limit: Pseudo-Divergence-

Free Element Free Galerkin”, Proceedings of the Fifth World Congress on Computational

Mechanics (WCCM V), July 7-12, 2002, Vienna, Austria.

Krige, D.G. Two-dimensional weighted moving average trend surfaces for ore evaluation.

Journal of the South African Institute of Mining & Metallurgy, 67, 13-79, 1966.

Lancaster P., Salkauskas K., Curve and Surface Fitting: an Introduction, Academic Press,

London, Orlando, 1986.

Lancaster P., Salkauskas K., “Surfaces generated by moving least squares methods”, Math.

Comp. 37, 141-158, 1981.

Lin H., Atluri S.N., “Meshless Local Petrov-Galerkin (MLPG) Method for Convection -

Diffusion Problems”, Computer Modeling in Engineerng & Sciences, 1(2), 45-60, 2000.

Liszka T., Orkisz J., “The Finite Difference Method at Arbitrary Irregular Grids and its

Application in Applied Mechanics”, Computers and Structures, 11, 83-95, 1980.

Liu W. K., Chen Y., Jun S., Chen J. S., Belytschko T., Pan C., Uras R. A. Chang C. T.,

“Overview and Applications of the Reproducing Kernel Particle Methods”, Archives of

Computational Methods in Engineering: State of the art reviews, 3, 3-80, 1996.

Lu Y.Y., Belytschko T., Gu L., “A New Implementation of the Element Free Galerkin

Method”, Computer Methods in Applied Mechanics and Engineering, 113, 397-414,

Lucy L. B., “A numerical approach to the testing of the fission hypothesis”, Astronomical

Journal 82, 1013-1024, 1977.

Mac Lain DH, “Drawing Contours with Arbitrary Data Points”, The Computer Journal, 17(4),

-324, 1974.

Matheron G., “Principles of Geostatistics”, Economic Geology, 58, 1246- 1266, 1963.

Mukherjee Y.X., Mukherjee S., “On boundary conditions in Element-Free Galerkin Method”,

Computational Mechanics, 11, 1997, 264-270.

Nayroles B., Touzot G., Villon P., “Generalizing the Finite Element Method: Diffuse

Approximation and Diffuse Elements”, Computational Mechanics, 10, 307-318, 1992.

Oñate E., Idelsohn S.R., “A mesh-free finite point method for advective-diffusive transport

and fluid flow problems”, Computational Mechanics, 21, 283-292, 1998.

Savignat J-M, Approximation diffuse Hermite et ses applications, Thèse de Doctorat, Ecole

des Mines de Paris, October 2000.

Shepard D., “A two-dimensional interpolation function for irregularly spaced data”, Proc.

rd National Conference ACM, 517-524, 1968.

Sukumar N., Moës N., Moran B. Belytschko T., “Extended Finite Element Method for Three-

Dimensional Crack Modeling”, International Journal for Numerical Methods in

Engineering, 48(11), 1549-1570, 2000.

Sulsky D., Schreyer HL, The Particle-In-Cell Method as a Natural Impact Algorithm, Sandia

National Laboratories, Contract No. AC-1801, 1993.

Syczewski M., Tribillo R., “Singularities of Sets Used in the Mesh Method”, Computers and

Structures, 14(5-6), 509-511, 1981.

Villon P, Contribution à l’Optimisation, Thèse de Docteur d’Etat, Université de Technologie

de Compiègne, France, 1991.

Wyatt M.J., Davies G., Snell C., “A New Difference Based Finite Element Method”, Instn.

Engineers, 59(2), 395-409, 1975.

Zhang X., Liu X-H., Song K-Z., Lu M-W., Least-squares collocation meshless method,

International Journal for Numerical Methods in Engineering, 51, 1089-1100, 2001.

Downloads

Published

2002-04-24

How to Cite

Breitkopf, P. ., Rassineux, A. ., & Villon, P. . (2002). An Introduction to Moving Least Squares Meshfree Methods. European Journal of Computational Mechanics, 11(7-8), 825–867. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2517

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>