Contact problems for particles in a shear flow

Authors

  • Nicolas Verdon Laboratoire J.-A. Dieudonné, CNRS UMR 6621 Université de Nice – Sophia Antipolis, Parc Valrose F-06108 Nice cedex 02
  • Aline Lefebvre-Lepot Centre de Mathématiques Appliquées, Ecole Polytechnique route de Saclay, F-91128 Palaiseau cedex
  • Laurent Lobry Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622 Université de Nice-Sophia Antipolis, Parc Valrose F-06108 Nice cedex 2
  • Patrice Laure Laboratoire J.-A. Dieudonné, CNRS UMR 6621 Université de Nice – Sophia Antipolis, Parc Valrose F-06108 Nice cedex 02

DOI:

https://doi.org/10.13052/EJCM.19.513-531

Keywords:

suspension, contact, fictitious domain method, level-set, gluey model, Stokes equation

Abstract

This paper focuses on improving the description of the contact between solid particles in a fluid flow. The numerical approach used is related to the fictitious domain method for the fluid–solid problem. It is associated to a gluey particle model in order to improve the behaviour of the particles during their contacts as a Lagrangian method is applied for their displacement. The numerical methodology is validated through 2D and 3D computations describing interactions of two particles in a shear flow. The results obtained show the ability of the scheme to recover the reversibility of the Stokes equations, even for 3D configurations. Finally, another example is studied with larger number of particles.

Downloads

Download data is not yet available.

References

Coupez T., Digonnet H., Hachem E., Laure P., Silva L., Valette R., “ Multidomain Finite Element

Computations: Application to Multiphasic Problems”, in M. Souli, D. Benson (eds),

Arbitrary Lagrangian–Eulerian and Fluid–Structure Interaction, Wiley, p. 229-297, 2009.

Fortin M., Glowinski R., Augmented Lagragian Methods, North-Holland, Amsterdam, 1983.

Glowinski R., Pan T.-W., Helsa T., Joseph D., “ A distributed Lagrange multiplier/fictious domain

method for particulate flows”, Int. J. Multiphase Flows, vol. 25, p. 755-794, 1999.

Glowinski R., Pan T.-W., Hesla T., Joseph D., Periaux J., “ A fictitious domain approach to

the direct numerical simulation of incompressible viscous flow past moving rigid bodies :

Application to particulate flow”, J. Comput. Phys., vol. 169, p. 363, 2001.

Hwang W., Hulsen M., Meijer H. E. H., “ Direct simulations of particle suspensions in a viscoelastic

fluid in sliding bi-periodic frames”, J. Non-Newt. Fluid Mech., vol. 121, p. 15-33,

Laure P., Beaume G., Basset O., Silva L., Coupez T., “ Numerical methods for solid particles in

particulate flow simulations”, European J. Comp. Mechanics, vol. 16, p. 365-383, 2007.

Lefebvre A., Modélisation numérique d’écoulements fluide/particules, PhD thesis, Université

Paris Sud - Paris XI, 11, 2007.

Lefebvre A., “ Numerical simulation of gluey particles”, M2AN, vol. 43, p. 53-80, 2009.

Maury B., “ A gluey particle model”, ESAIM: Proc., vol. 18, p. 133-142, 2007.

Meunier A., Bossis G., “ The influence of surface forces on shear-induced tracer diffusion in

mono and bidisperse suspensions”, Eur. Phys. J. E, vol. 25, p. 187-199, 2008.

Patankar N., Singh P., Joseph D., Glowinski R., Pan T.-W., “ A new formulation of the distributed

Lagrange multiplier/fictitious domain method for particulate flows”, Int. J. of Multiphase

flow, vol. 26, p. 1509-1524, 2000.

Singh P., Joseph D., “ Sedimentation of a sphere near a vertical wall in an Oldroyd-B fluid”, J.

Non-Newtonian Fluid Mech., vol. 94, p. 179-203, 2000.

Verdon N., Beaume G., Lefebvre-Lepot A., Lobry L., Laure P., “ Immersed finite element

method for direct numerical simulation of particle suspension in a shear flow”, J. Comp.

Physics, 2010.

Wachs A., “ A DEM-DLM/FD method for direct numerical simulation of particulate flows:

Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions”, Computers

& Fluids, vol. 38, p. 1608-1628, 2009.

Downloads

Published

2010-08-06

How to Cite

Verdon, N. ., Lefebvre-Lepot, A. ., Lobry, L. ., & Laure, P. . (2010). Contact problems for particles in a shear flow. European Journal of Computational Mechanics, 19(5-7), 513–531. https://doi.org/10.13052/EJCM.19.513-531

Issue

Section

Original Article