Modified Lees–Edwards Boundary conditions and viscous contact for numerical simulations of particles in a shear flow

Authors

  • Nicolas Verdon Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université de Nice, Parc Valrose, 06108 Nice Cedex 02, France;
  • Aline Lefebvre-Lepot Centre de Mathématiques Appliquées (CMAP), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
  • Patrice Laure Laboratoire J.A. Dieudonné, UMR CNRS 7351, Univedex 02, France; and Mines ParisTech, CEMEF, UMR CNRS 7635, Sophia Antipolis, 06560 Valbonne, France;
  • Laurent Lobry Laboratoire de Physique de la Matière Condensée (LPMC), Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France

DOI:

https://doi.org/10.13052/17797179.2012.714851

Keywords:

suspension, contact, viscous contact model, fluid-structure interaction, immersed domain method

Abstract

We present a way to handle contacts between rigid particles in shear flow. The influence of such a modeling is shown by studying an example with 13 particles in 3D. Studying a concentrated suspension in 2D, we demonstrate that contact modelling as well as choice of boundary conditions influences the macroscopic properties of the suspension.

Downloads

Download data is not yet available.

References

Beaume, G. (2008). Modélisation et simulation numérique directe de l’écoulement d’un fluide complexe

(Modelling and numerical simulation of a complex fluid flow) (PhD thesis, Ecole Nationale Supérieure

des Mines de Paris), http://tel.archives-ouvertes.fr/tel-00416435.

Coupez, T., Digonnet, H., Hachem, E., Laure, P., Silva, L., & Valette, R. (2010). Multidomain finite element

computations: Application to multiphasic problems. In M. Souli & D.J. Benson (Eds.), Arbitrary

Lagrangian–Eulerian and fluid–structure interaction. Numerical simulation (pp. 221–289).

Wiley-ISTE.

Glowinski, R., Pan, T.-W., Helsa, T., & Joseph D. (1999). A distributed Lagrange multiplier/fictious

domain method for particulate flows. International Journal of Multiphase Flows, 25, 755–794.

Hwang, W., Hulsen, M., & Meijer, H.E.H. (2004). Direct simulation of particle suspensions in sliding

bi-periodic frames. Journal of Computational Physics, 194, 742–772.

Kuhn H.W. & Tucker A.W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability, 31 July - 12 August 1950,

University of California Press, Berkeley and Los Angeles (pp. 481–492).

Laure, P., Beaume, G., Basset, O., Silva, L., & Coupez T. (2007). Numerical methods for solid particles

in particulate flow simulations. European Journal of Computational Mechanics, 16, 365–383.

Lees, A. & Edwards, S. (1972). The computer study of transport process under extreme condition. Journal

of Physics C: Solid State Physics, 5, 1921–1928.

Lefebvre, A. (2007). Modélisation numérique d’écoulements fluide/particules (Numerical modelling of

fluid/particle flows) (PhD thesis, Université Paris Sud - Paris XI, 11), http://tel.archives-ouvertes.fr/

tel-00257246/en/.

Lefebvre A. (2009). Numerical simulation of gluey particles. M2AN, 43, 53–80.

Lefebvre, A. & Maury, B. (2005). Apparent viscosity of a mixture of a Newtonian fluid and interacting

particles. CRAS Mécanique, 333(12), 923–933.

Maury, B. (2007). A gluey particle model. ESAIM: Proceedings, 18, 133–142.

Patankar, N., Singh, P., Joseph, D., Glowinski, R., & Pan, T.-W. (2000). A new formulation of the distributed

Lagrange multiplier/fictitious domain method for particulate flows. International Journal of

Multiphase Flow, 26, 1509–1524.

Verdon, N., Lefebvre-Lepot, A., Lobry, L., & Laure, P. (2010). Contact problems for particles in a shear

flow. European Journal of Computational Mechanics, 19, 513–531.

Verdon, N., Beaume, G., Lefebvre-Lepot, A., Lobry, L., & Laure, P. (submitted). Influences of contact

modelling in direct numerical simulations of particle suspension in a shear flow. Journal of Non

Newtonian Fluid Mechanics.

Downloads

Published

2012-06-06

How to Cite

Verdon, N. ., Lefebvre-Lepot, A., Laure, P., & Lobry, L. . (2012). Modified Lees–Edwards Boundary conditions and viscous contact for numerical simulations of particles in a shear flow. European Journal of Computational Mechanics, 21(3-6), 397–406. https://doi.org/10.13052/17797179.2012.714851

Issue

Section

Original Article

Most read articles by the same author(s)