Modified Lees–Edwards Boundary conditions and viscous contact for numerical simulations of particles in a shear flow
DOI:
https://doi.org/10.13052/17797179.2012.714851Keywords:
suspension, contact, viscous contact model, fluid-structure interaction, immersed domain methodAbstract
We present a way to handle contacts between rigid particles in shear flow. The influence of such a modeling is shown by studying an example with 13 particles in 3D. Studying a concentrated suspension in 2D, we demonstrate that contact modelling as well as choice of boundary conditions influences the macroscopic properties of the suspension.
Downloads
References
Beaume, G. (2008). Modélisation et simulation numérique directe de l’écoulement d’un fluide complexe
(Modelling and numerical simulation of a complex fluid flow) (PhD thesis, Ecole Nationale Supérieure
des Mines de Paris), http://tel.archives-ouvertes.fr/tel-00416435.
Coupez, T., Digonnet, H., Hachem, E., Laure, P., Silva, L., & Valette, R. (2010). Multidomain finite element
computations: Application to multiphasic problems. In M. Souli & D.J. Benson (Eds.), Arbitrary
Lagrangian–Eulerian and fluid–structure interaction. Numerical simulation (pp. 221–289).
Wiley-ISTE.
Glowinski, R., Pan, T.-W., Helsa, T., & Joseph D. (1999). A distributed Lagrange multiplier/fictious
domain method for particulate flows. International Journal of Multiphase Flows, 25, 755–794.
Hwang, W., Hulsen, M., & Meijer, H.E.H. (2004). Direct simulation of particle suspensions in sliding
bi-periodic frames. Journal of Computational Physics, 194, 742–772.
Kuhn H.W. & Tucker A.W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, 31 July - 12 August 1950,
University of California Press, Berkeley and Los Angeles (pp. 481–492).
Laure, P., Beaume, G., Basset, O., Silva, L., & Coupez T. (2007). Numerical methods for solid particles
in particulate flow simulations. European Journal of Computational Mechanics, 16, 365–383.
Lees, A. & Edwards, S. (1972). The computer study of transport process under extreme condition. Journal
of Physics C: Solid State Physics, 5, 1921–1928.
Lefebvre, A. (2007). Modélisation numérique d’écoulements fluide/particules (Numerical modelling of
fluid/particle flows) (PhD thesis, Université Paris Sud - Paris XI, 11), http://tel.archives-ouvertes.fr/
tel-00257246/en/.
Lefebvre A. (2009). Numerical simulation of gluey particles. M2AN, 43, 53–80.
Lefebvre, A. & Maury, B. (2005). Apparent viscosity of a mixture of a Newtonian fluid and interacting
particles. CRAS Mécanique, 333(12), 923–933.
Maury, B. (2007). A gluey particle model. ESAIM: Proceedings, 18, 133–142.
Patankar, N., Singh, P., Joseph, D., Glowinski, R., & Pan, T.-W. (2000). A new formulation of the distributed
Lagrange multiplier/fictitious domain method for particulate flows. International Journal of
Multiphase Flow, 26, 1509–1524.
Verdon, N., Lefebvre-Lepot, A., Lobry, L., & Laure, P. (2010). Contact problems for particles in a shear
flow. European Journal of Computational Mechanics, 19, 513–531.
Verdon, N., Beaume, G., Lefebvre-Lepot, A., Lobry, L., & Laure, P. (submitted). Influences of contact
modelling in direct numerical simulations of particle suspension in a shear flow. Journal of Non
Newtonian Fluid Mechanics.