Monolithic stabilized finite element method for rigid body motions in the incompressible Navier-Stokes flow

Monolothic SFEM for FSI

Authors

  • Stephanie Feghali Center for Material Forming (CEMEF) MINES-ParisTech (UMR - CNRS) 1 rue Claude Daunesse BP 207, F-06904 Sophia-Antipolis cedex
  • Elie Hachem Center for Material Forming (CEMEF) MINES-ParisTech (UMR - CNRS) 1 rue Claude Daunesse BP 207, F-06904 Sophia-Antipolis cedex
  • Thierry Coupez Center for Material Forming (CEMEF) MINES-ParisTech (UMR - CNRS) 1 rue Claude Daunesse BP 207, F-06904 Sophia-Antipolis cedex

DOI:

https://doi.org/10.13052/EJCM.19.547-573

Keywords:

monolothic stabilized finite elements, rigid body motions, incompressible flows, fluid Structure interactions, unstructured mesh

Abstract

We propose a new immersed volume method for solving rigid body motions in the incompressible Navier-Stokes flow. The used monolithic formulation gives rise to an extra stress tensor in the Navier-Stokes equations coming from the presence of the structure in the fluid. The system is solved using a finite element variational multiscale (VMS) method, which consists in here of a decomposition for both the velocity and the pressure fields into coarse/resolved scales and fine/unresolved scales. The distinctive feature of the proposed approach resides in the efficient enrichment of the extra constraint. We assess the behaviour and accuracy of the proposed formulation in the simulation of 2D and 3D examples.

Downloads

Download data is not yet available.

References

Badia S., Codina R., « Stabilized continuous and discontinuous galerkin techniques for Darcy

flow », Computer Methods in Applied Mechanics and Engineering, vol. 199, p. 1654-1667,

Benson D., « An efficient, accurate, simple ALE method for nonlinear finite element programs

», Computer Methods in Applied Mechanics and Engineering, vol. 72, n° 3, p. 305-

, 1989.

Bruchon J., Digonnet H., Coupez T., « Using a signed distance function for the simulation

of metal forming processes : Formulation of the contact condition and mesh adaptation »,

International Journal for Numerical Methods in Engineering, vol. 78, n° 8, p. 980-1008,

Caussin P., Gerbeau J.-F., F. N., « Added-mass effect in the design of partitioned algorithms for

fluid-structure problems », Computer Methods in Applied Mechanics and Engineering, vol.

, n° 42-44, p. 4506-4527, 2005.

Cereva M., Chinumenti M., Codina R., « Mixed stabilized finite element methods in nonlinear

solid mechanics : PartI : Formulation », Computer Methods in Applied Mechanics and

Engineering, vol. 199, n° 37-40, p. 2559-2570, 2010.

Codina R., « Stabilization of incompressibility and convection through orthogonal sub-scales in

finite element methods », Computer Methods in Applied Mechanics and Engineering, vol.

, n° 13-14, p. 1579-1599, 2000.

Codina R., « Pressure stability in fractional step finite element methods for incompressible

flows », , vol. 170, p. 112-140, 2001.

Codina R., González-Ondina J. M., Díaz-Hernández G., Principe J., « Finite element approximation

of the modified Boussinesq equations using a stabilized formulation », International

Journal for Numerical Methods in Fluids, vol. 57, n° 9, p. 1249-1268, 2008.

Coquerelle M., Cottet G.-H., « A vortex level set method for the two-way coupling of an incompressible

fluid with colliding rigid bodies », Journal of Computational Physics, vol.

, n° 21, p. 9121-9137, 2008.

Coupez T., « Génération de maillage et adaptation de maillage par optimisation locale », Revue

européenne des éléments finis, vol. 9, p. 403-423, 2000.

Coupez T., Hugues D., Hachem E., Laure P., Silva L., Valette R., – Multi domain Finite Element

Computations : Application to Multiphasic Problems– Arbitrary Lagrangian-Eulerian and

Fluid-Structure Interaction, ISTE Ltd and John Wiley Sons Inc, 2010.

Digonnet H., Coupez T., « Object-oriented programming for fast and easy development of parallel

applications in forming processes simulation », K.J. Bathe, (ed)., Second MIT Conference

on Computational Fluid and Solid Mechanics, p. 1922-1924, 2003.

Donea J., Giuliani S., Halleux J. P., « An Arbitrary Lagrangian-Eulerian finite element method

for transient dynamic fluid-structure interactions », Computer Methods in Applied Mechanics

and Engineering, vol. 33, n° 1-3, p. 689-723, 1982.

Fernández M. A., Moubachir M., « A Newton method using exact jacobians for solving fluidstructure

coupling », Computers and Structure, vol. 83, n° 2-3, p. 127-142, 2005.

Franca L. P., Hughes T. J. R., « Two classes of mixed finite element methods », Computer

Methods in Applied Mechanics and Engineering, vol. 69, n° 1, p. 89-129, 1988.

Gerbeau J.-F., Vidrascu M., « A quasi-Newton algorithm based on a reduced model for fluid

structure interaction problems in blood flow », Mathematical Modelling and Numerical

Analysis, vol. 37, n° 4, p. 631-647, 2003.

Gerbeau J.-F., Vidrascu M., Frey P., « Fluid structure interaction in blood flows on geometries

coming from medical imaging », Computers and Structure, vol. 83, n° 2-3, p. 155-165, 2005.

Glowinski R., Pan T., Helsa T. I., Joseph D. D., Periaux J., « A fictitious domain approach to

the direct numerical simulation of incompressible viscous flow past moving rigid bodies :

application to particulate flow », Journal of Computational Physics, vol. 169, n° 2, p. 363-

, 2001.

Glowinski R., Pan T. W., Helsa T.-I., Joseph D. D., « A distributed lagrange multiplier/fictious

domain methods for particulate flows », International Journal of Multiphase flow, vol. 25,

n° 5, p. 755-794, 1999.

Gruau C., Coupez T., « 3D tetrahedral, unstructured and anisotropic mesh generation with

adaptation to natural and multidomain metric », Computer Methods in Applied Mechanics

and Engineering, vol. 194, n° 18-49, p. 4951-4976, 2005.

Hachem E., Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside

Industrial Furnaces, PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.

Hachem E., B. R., Kloczko T., Digonnet H., Coupez T., « Stabilized finite element method for

incompressible flows with high Reynolds number », Journal of Computational Physics, vol.

, n° 23, p. 8643-8665, 2010.

Hirt C. W., Amsden A. A., Cook J. L., « An Arbitrary Lagrangian-Eulerian computing method

for all speeds », Journal of Computational Physics, vol. 14, n° 3, p. 227-253, 1974.

Hughes T. J. R., Liu W. K., Zimmerman T., « Lagrangian-Eulerian finite element formulation

for incompressible viscous flow », Computer Methods in Applied Mechanics and Engineering,

vol. 29, n° 3, p. 329-349, 1981.

HwangW. R., Hulsen M. A., Meijer H. E., « Direct simulations of particle suspensions in a viscoelastic

fluid in sliding bi-periodic frames », Journal of Non-Newtonian Fluid Mechanics,

vol. 121, n° 1, p. 15-33, 2004.

Janela J., Lefebvre A., Maury B., « A penalty method for the simulation of fluid-rigid body

interaction », ESAIM Proceedings, vol. 14, p. 115-123, 2005.

Küttler U., Wall A. W., « Fixed-point fluidstructure interaction solvers with dynamic relaxation

», Computational Mechanics, vol. 43, n° 1, p. 61-72, 2008.

Laure P., Beaume G., Basset O., Silva L., Coupez T., « Numerical methods for solid particles

in particulate flow simulations », European Journal of Computational Mechanics, vol. 16,

p. 365-383, 2007.

Le Tallec P., Mouro J., « Fluid structure interaction with large structural displacements », Computer

Methods in Applied Mechanics and Engineering, vol. 190, n° 24-25, p. 3039-3067,

Mesri Y., Digonnet H., Coupez T., « Advanced parallel computing in material forming with

CIMLIB », European Journal of Computational Mechnanics, vol. 18, n° 7-8, p. 669-694,

Michler C., E.H. van Brummelen E., de Borst R., « An interface NewtonKrylov solver for

fluidstructure interaction », International Journal for Numerical Methods in Fluids, vol. 47,

n° 10-11, p. 1189-1195, 2005.

Peskin C. S., « The immersed boundary method », Acta Numerica, vol. 11, p. 479-517, 2002.

Ritz J. B., Caltagirone J. P., « A Numerical Continuous Model for the Hydrodynamics of Fluid

Particle Systems », International Journal for Numerical Methods in Fluids, vol. 30, n° 8,

p. 1067-1090, 1999.

Souli M., Ouahsine A., Lewin L., « ALE formulation for fluid structure interaction problems »,

Computer Methods in Applied Mechanics and Engineering, vol. 190, n° 5-7, p. 659-675,

van der Pijl S., Segal A., Vuik C., Wesseling P., « A mass-conserving Level-Set method for

modelling of multi-phase flows », International Journal for Numerical Methods in Fluids,

vol. 47, n° 4, p. 339-361, 2005.

van Loon R., Anderson P. D., van de Vosse F. N., Sherwin S. J., « Comparison of Various fluidstructure

interaction methods for deformable bodies », Computers and Structures, vol. 85,

n° 11-14, p. 833-843, 2007.

Downloads

Published

2010-08-06

How to Cite

Feghali, S. ., Hachem, E. ., & Coupez, T. . (2010). Monolithic stabilized finite element method for rigid body motions in the incompressible Navier-Stokes flow: Monolothic SFEM for FSI. European Journal of Computational Mechanics, 19(5-7), 547–573. https://doi.org/10.13052/EJCM.19.547-573

Issue

Section

Original Article