Numerical methods for solid particles in particulate flow simulations
DOI:
https://doi.org/10.13052/REMN.16.365-383Keywords:
particle suspensions, particulate flows, finite element method, direct numerical simulationsAbstract
The flow motion of solid particle suspensions is a fundamental issue in many problems of practical interest. The velocity field of a such system is computed by a finite element method with a multi-domain approach of two phases (namely a viscous fluid and rigid bodies), whereas the particle displacement is made by a particulate method. We focus our paper on a simple shear flow of Newtonian fluid.
Downloads
References
Arnold D., Brezzi F., Fortin M., “ Stable finite element for Stokes equations”, Calcolo, vol. 21,
p. 337-344, 1984.
Baines M., “ Grid adaptation via node movement”, Applied Numerical Mathematics, vol. 26,
p. 77- 96, 1998.
Bigot E., Simulation tridimensionnelle du remplissage de corps minces par injection, PhD thesis,
Ecole Nationale Supérieure des Mines de Paris, 2001.
Brooks A., Hughes T., “ Streamline upwind/Petrov-Galerkin formulations for convectivedominated
flows with particular emphasis on incompressible Navier- Stokes equations”, Comp.
Meth. in Appl. Mech. Eng., vol. 32, p. 199- 259, 1982.
Fan X.-J., Phan-Thien N., Zheng R., “ A direct simulation of fibre suspensions”, J. Non-
Newtonian Fluid Mech., vol. 74, p. 113-1353, 1998.
Fortin M., Brezzi F., Mixed and Hybrid finite element method, Springer Verlag, 1991.
Franca L., Frey S., Hugues T., “ Stabilized finite element methods: II The incompressible
Navier-Stokes equations”, Comput. Methods Appl. Mech. Engrg., vol. 29, p. 209-233, 1992.
Glowinski R., Pan T.-W., Helsa T., Joseph D., “ A distributed Lagrange multiplier/fictious domain
method for particulate flows”, Int. J. Multiphase Flows, vol. 25, p. 755-794, 1998.
Gruau C., Génération de métriques pour adaptation anisotrope de maillages, applications à la
mise en forme des matériaux, PhD thesis, Ecole Nationale Supérieure des Mines de Paris,
Gruau C., Coupez T., “ 3D tetrahedral unstructured and anisotropic mesh generation with adaptation
to natural and multidomain metric”, Comput. Meth. Appl. Mech. Engrg., vol. 194,
p. 4951-4976, 2005.
Hwang W., Hulsen M., Meijer H., “ Direct Simulation of particle suspensions in sliding biperiodic
frames”, Journal of Non-Newtonian Fluid Mechanics, vol. 194, p. 742-772, 2004.
Laure P., Megally A., Coupez T., “ Collision strategy for the direct simulation of moving fibers
in viscous fluid”, Int. Conf. on Computational Methods for coupled problems in science and
engineering, 2005.
Megally A., Etude et modélisation de l’orientation de fibres longues dans des thermoplastiques
renforcés, PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2005.
Megally A., Laure P., Coupez T., “ Direct Simulation of Rigid Fibers in Viscous Fluid”, 3rd
International Symposium on Two-phase flow modelling and Experimentation, Pisa, 2004.
Osher S., Sethian J., “ Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations”, J. of Computational Physics, vol. 79, p. 12-69, 1988.
Patankar N., Singh P., Joseph D., Glowinski R., Pan T.-W., “ A new formulation of the distributed
Lagrange multiplier/fictitious domain method for particulate flows”, Int. J. of Multiphase
flow, vol. 26, p. 1509- 1524, 2000.
Peng D., Mzerriman B., Osher S., Zhao H., Kang M., “ A PDE- based fast local level set
method”, J. Comp. Physics, vol. 150, p. 410, 1999.
Pichelin E., Coupez T., “ Finite element solution of the 3D mold filling problem for viscous
incompressible fluid”, Comput. Methods Appl. Mech. Engrg., vol. 163, p. 359-371, 1998.
Pierre R., “ Optimal selection of the bubble function in the stabilization of the P1-P1 element
for the Stokes problem”, SIAM J. Numer. Anal., vol. 32, p. 1210-1224, 1995.
Singh P., Joseph D., “ Sedimentation of a sphere near a vertical wall in an Oldroyd-B fluid”, J.
Non-Newtonian Fluid Mech., vol. 94, p. 179-203, 2000.
Yamane Y., Kaneda Y., Dio M., “ Numerical simulation of semi-dilute suspensions of rodlike
particles in shear flow”, J. Non-Newtonian Fluid Mech., vol. 54, p. 405-421, 1994.