Chimera method applied to the simulation of a freely falling cylinder in a channel

Authors

  • Thibaut Deloze Institut des Mécaniques des Fluides et des Solide (IMFS) Université de Strasbourg 2 rue de Boussingault F-67000 Strasbourg
  • Yannick Hoarau Institut des Mécaniques des Fluides et des Solide (IMFS) Université de Strasbourg 2 rue de Boussingault F-67000 Strasbourg
  • Jan Dušek Institut des Mécaniques des Fluides et des Solide (IMFS) Université de Strasbourg 2 rue de Boussingault F-67000 Strasbourg

DOI:

https://doi.org/10.13052/EJCM.19.575-590

Keywords:

chimera method, overlapped grid, falling, cylinder, channel

Abstract

In this paper, we study the motion of a circular cylinder freely falling in a channel under the action of gravity parallel to the wall. The fixed parameters of the study are the cylinder diameter to channel width ratio, D/d = 3.3, and the fluid to particle density ratio, = 2. The varying parameters are the initial position (in or out of the middle axis) and the Galileo number (151 Ga 300). An automatic chimera method is implemented in a Navier- Stokes solver to simulate this moving confined configuration. The presence of the wall accelerates the oscillations of the motion. The initial position has an influence on the amplification of transverse oscillations. If the cylinder is out of the middle axis, transverse oscillations appear earlier and reach rapidly the amplitude of the terminal periodic oscillations. A relation between the Strouhal and Reynolds numbers is proposed.

Downloads

Download data is not yet available.

References

Anagnostopoulos P., “ Numerical study of the flow past a cylinder excited transversely to the

incident stream. Part 1: Lock-in zone, hydrodynamic forces and wake geometry”, Journal

of Fluids and Structures, vol. 14, p. 819-851, 2000.

Benek J. A., Steger J. L., Dougherty F., “ A flexible grid embedding technique with application

to the Euler equations”, AIAA Paper, 1983.

Braza M., Chasaing P., Ha Minh H., “ Numerical study and physical analysis of the pressure

and velocity fields in the near wake of a circular cylinder”, Journal of Fluid Mechanics, vol.

, p. 79-130, 1986.

Chorin A., “ Numerical solution of the Navier-Stokes equations.”, J. Math. Computation, vol.

, p. 745, 1968.

Cruchaga M., Mu˜noz C., Celentano D., “ Simulation and experimental validation of the motion

of immersed rigid bodies in viscous flows”, Computer Methods in Applied Mechanics and

Engineering, vol. 197, p. 2823-2835, 2008.

Duˇsek J., Le Gal P., Frauni´e; P., “ A numerical and theoretical study of the first Hopf bifurcation

in a cylinder wake”, Journal of Fluid Mechanics, vol. 264, p. 59-80, 1994.

Feng J., Hu H., Joseph D., “ Direct simulation of initial value problems for the motion of solid

bodies in a Newtonian fluid Part 1. Sedimentation”, Journal of Fluid Mechanics, vol. 261,

p. 95-134, 1994.

Govardhan R., Williamson C., “ Modes of vortex formation and frequency response of a freely

vibrating cylinder”, Journal of Fluid Mechanics, vol. 420, p. 85-130, 2000.

Horowitz M., Williamson C., “ Dynamics of a rising and falling cylinder”, Journal of Fluids

and Structures, vol. 22, p. 837-843, 2006.

Jameson A., “ Analysis and design of numerical scheme for gas dynamics, 1 : artificial diffusion,

upwind biased, limiters and their effect on accuracy and multigrid convergence”,

Computational Fluid Dynamics, 1995.

Jenny M., Duˇsek J., “ Efficient numerical method for the direct numerical simulation of the flow

past a single light moving spherical body in transitional regimes”, Journal of Computational

Physics, vol. 194, p. 215-232, 2004.

Koopmann G. H., “ The vortex wakes of vibrating cylinders at low Reynolds numbers”, Journal

of Fluid Mechanics, vol. 28, p. 501-512, 1967.

Landmann B., Montagnac M., “ A highly automated parallel Chimera method for overset grids

based on the implicit hole cutting technique”, International Journal for Numerical Methods

in Fluids, n.d.

Liao W., Cai J., Tsai H. M., “ A multigrid overset grid flow solver with implicit hole cutting

method”, Computer Methods in Applied Mechanics and Engineering, vol. 196, p. 1701 -

, 2007.

Namkoong K., Yoo J., Choi H., “ Numerical analysis of two-dimensional motion of a freely

falling circular cylinder in an infinite fluid”, Journal of Fluid Mechanics, vol. 604, p. 33-53,

Nobari M., Naderan H., “ A numerical study of flow past a cylinder with cross flow and inline

oscillation”, Computers & Fluids, vol. 35, p. 393-415, 2006.

Persillon H., Braza M., “ Physical analysis of the transition to turbulence in the wake of a

circular cylinder by three-dimensional Navier-Stokes simulation”, J. Fluid Mech., vol. 365,

p. 23-88, 1998.

Placzek A., Sigrist J., Hamdouni A., “ Numerical simulation of an oscillating cylinder in a

cross-flow at low Reynolds number: Forced and free oscillations”, Computers & Fluids,

vol. 38, p. 80-100, 2009.

Shiels D., Leonard A., Roshko A., “ Flow-induced vibration of a circular cylinder at limiting

structural parameters”, Journal of Fluids and Structures, vol. 15, p. 3-21, 2001.

Siikonen T. L., Rautaheimo P. P., Salminen E. J., “ Numerical techniques for complex aeronautical

flows”, European Congress on Computational Methods in Applied Sciences and

Engineering ECCOMAS 2000, 2000.

Tritton D., “ Experiments on the flow past a circular cylinder at low Reynolds numbers”, Journal

of Fluid Mechanics, vol. 6, p. 547-567, 1959.

Vos J., Rizzi A., Darracq D., Hirschel E., “ Naviers-Stokes solvers in European aircraft design”,

Progress in Aerospace Sciences, vol. 38, p. 601-697, 2002.

Vos J., Rizzi A., orjon A., Chaput E., Soinne E., “ Recent Advances in aerodynamics inside the

NSMB (Navier-Stokes Multiblock) Consortium”, AIAA paper, 1998.

Williamson C., Brown G., “ A series in 1/p Re to represent the Strouhal–Reynolds number

relationship of the cylinder wake”, Journal of Fluids and Structures, vol. 12, p. 1073-1085,

Williamson C., Roshko A., “ Vortex formation in the wake of an oscillating cylinder”, Journal

of Fluids and Structures, vol. 2, p. 355-381, 1988.

Downloads

Published

2010-08-06

How to Cite

Deloze, T., Hoarau, Y. ., & Dušek, J. . (2010). Chimera method applied to the simulation of a freely falling cylinder in a channel. European Journal of Computational Mechanics, 19(5-7), 575–590. https://doi.org/10.13052/EJCM.19.575-590

Issue

Section

Original Article

Most read articles by the same author(s)