Prediction and physical analysis of unsteady flows around a pitching airfoil with the dynamic mesh approah

Authors

  • Sébastien Bourdet IMFT, UMR 5502 CNRS-INPT, allée du Pr. Camille Soula, F-31400 Toulouse
  • Marianna Braza IMFT, UMR 5502 CNRS-INPT, allée du Pr. Camille Soula, F-31400 Toulouse
  • Yannick Hoarau IMFS, UMR 7507 ULP-CNRS, 2 rue Boussingault, F-67000 Strasbourg
  • Rajah El Akoury IMFT, UMR 5502 CNRS-INPT, allée du Pr. Camille Soula, F-31400 Toulouse
  • Arif Ashraf IMFT, UMR 5502 CNRS-INPT, allée du Pr. Camille Soula, F-31400 Toulouse
  • Gilles Harran IMFT, UMR 5502 CNRS-INPT, allée du Pr. Camille Soula, F-31400 Toulouse
  • Patrick Chassaing IMFT, UMR 5502 CNRS-INPT, allée du Pr. Camille Soula, F-31400 Toulouse
  • Henda Djeridi IRENav, EA 3634, BP 600F, 29240 Brest Armées

DOI:

https://doi.org/10.13052/REMN.16.451-476

Keywords:

fluid structure interaction, airfoil, pitching

Abstract

The fluid structure interaction due to the pitching motion of a NACA0012 aerofoil has been studied numerically at moderate and high Reynolds numbers. The dynamic mesh method has been employed in the code ICARE/IMFT solving the Navier-Stokes equations in compressible flows. At high Reynolds number, the phase-averaged Navier-Stokes equations have been solved, coupled with advanced URANS modelling in the NSMB code. The vortex dynamics and especially the stall are physically captured by the dynamic mesh method and by the URANS/Organised Eddy Simulation approach.

Downloads

Download data is not yet available.

References

Ahmed S., Chandrasekhara M., « Reattachment studies of an oscillating airfoil dynamic stall

flowfield », AIAA J., vol. 32, n° 5, p. 1006-1012, 1994.

Aubrun S., « Etude expérimentale des structures cohérentes dans un écoulement turbulent décollé

et comparaison avec une couche de mélange », Thèse de Doctorat, Institut National

Polytechnique de Toulouse, France, 1998.

Barakos J., Drikakis G. A., « An implicit unfactored method for unsteady turbulent compressible

flow with moving boundaries », Comp. Fluids, vol. 28, p. 899-922, 1999.

Batina J., « Unsteady Euler airfoil solutions using unstructured dynamic meshes », AIAA J., vol.

, n° 8, p. 1381-1388, august, 1990.

Blaschak J., Kriegsmann G. A., « A comparative study of absorbing boundary conditions », J.

Comp. Phys., vol. 77, p. 79-130, 1988.

Bouhadji A., Analyse physique par simulation numérique de phénomènes de transition Bi et Tridimensionnels

dans l’écoulement compressible, visqueux autour d’une aile d’avion, Thèse

de doctorat, Institut National Polytechnique de Toulouse, 1998.

Bouhadji A., Bourdet S., Braza M., Hoarau Y., Rodes P., G.Tzabiras, « Turbulence Modelling

of Unsteady Flows with a Pronounced Periodic Character », Notes on Numerical Fluid

Mechanics, vol. 81, p. 87-96, 2002.

Bouhadji A., Braza M., « Compressibility effect on the 2D and 3D vortex structures in a transonic

flow around a wing », ERCOFTAC bulletin, vol. 34, p. 4-9, 1997.

Bouhadji A., Braza M., « Physical analysis of unsteady viscous flow phenomena around a

wing by Direct Navier-Stokes Simulation », 4th ECCOMAS Computational Fluid Dynamics

Conference, Athens, 1998.

Bouhadji A., Braza M., « Organised modes and shock-vortex interaction in unsteady viscous

transonic flows around an aerofoil. Part II:Reynolds number effect », J. Computers and

Fluids, vol. 32, n° 9, p. 1261-1281, 2003a.

Bouhadji A., Braza M., « Physical analysis by numerical simulation of organised modes and

shock-vortex interaction in transonic flows around an aerofoil. Part I:Mach number effect »,

J. Computers and Fluids, vol. 32, n° 9, p. 1233-1260, 2003b.

Bourdet S., Analyse physique d’écoulements compressibles instationnaires autour de structures

portantes dans le contexte d’interaction fluide-structure, Thèse de doctorat, Institut National

Polytechnique de Toulouse, 2005.

Bradshaw P., Atwell N., Ferris D., « Calculation of boundary layer development using the

turbulent energy equation », J. of Fluid Mech., vol. 28, p. 593-616, 1967.

BrazaM., « Flow Physics Modelling in Fluid-Structure Interaction », Notes on Numerical Fluid

Mechanics, dedicated volume "Progress in Computational Flow-Structure Interaction ",

Sci. Eds. W. Haase, V. Selmin, B. Winzell, Publisher Springer, vol. 81, p. 145-154, 2002.

Braza M., Perrin R., Hoarau Y., « Turbulence Properties in the cylinder wake at high Reynolds

number », J. Fluids. Struct., vol. in print, p. 1-16, 2006.

Carr L., McAlister K., McCroskey W., Analysis of the developpment of dynamic stall base on

oscillating airfoils experiments, Technical Notes n° TN-D-8382, NASA, 1977.

Chandrasekhara M., Carr L., « Flow visualisations studies of the Mach number effets on dynamic

stall », J. Aircraft, vol. 27, p. 516-522, 1990.

Chien K., « Predictions of channel and boundary-layer flows with a low-Reynolds number

turbulence model », AIAA Journal, vol. 20, p. 33-38, 1982.

Choudhuri G., Knight D., « Effects of compressibility, pitch rate, and Reynolds number on

unsteady incipient leading -edge boundary layer separation over a pitching airfoil », J. Fluid

Mech., vol. 308, p. 195-217, 1996.

Daly B., Harlow F., « Transport equations in turbulence », Physics of Fluid, vol. 13, p. 2634-

, 1970.

Dervieux A., Braza M., Dussauge J., « Computation and comparison of efficient turbulence

models in aeronautics », Notes on Numerical Fluid Mechanics, vol. 65, Vieweg, 1998.

Djeridi H., Braza M., Perrin R., Harran G., Cid E., Cazin S., « Near-Wake Turbulence Properties

Around a Circular Cylinder at High Reynolds Number », J. Flow Turbulence and

Combustion, vol. 71, p. 19-34, 2003.

Farhat C., Degand C., Koobus B., LesoinneM., « Torsional springs for two-dimensional dynamics

unstructured fluid meshes », Comput. Methods Appl.Mech. Engrg., vol. 163, p. 231-245,

Favier D., Maresca C., Berton E., Allain C., « Etude Expérimentale et Numérique Du

Développement de la Couche Limite Instationnaire sur Modèles Oscillants En Écoulements

D/3D », D.R.E.T., Convention no 95-052, Rapport final de synthèse, Mai, 1998.

Guo W., Fu D., Ma Y., « Numerical investigation of dynamic stall of an oscillating airfoil », Int.

J. Numer. Methods Fluids, vol. 10, p. 723-734, 1994.

Haase W., Selmin V., Winzell B., « Progress in Computational Flow-Structure Interaction, Results

of the Project UNSI, Supported by the European Union 1998 - 2000 », Notes on Num.

Fluid Mech. and Multidisciplinary Design, 2002.

Hoarau Y., Braza M., Ventikos Y., Faghani D., Tzabiras G., « Organized modes and the

three-dimensional transition to turbulence in the incompressible flow around a NACA0012

wing », J. Fluid Mech., vol. 496, p. 63-72, 2003.

Hoarau Y., Favier D., Braza M., P.Rodes, G.Tzabiras, Allain C., Berton E., Maresca C., « Turbulence

Modelling of Unsteady Flows with a Pronounced Periodic Character », IUTAM

Symposium on Unsteady Separated Flows, 8-12 April 2002, Toulouse, France, 2002.

Jin G., Braza M., « A non-reflecting outlet boundary condition for incompressible unsteady

Navier-Stokes calculations », J. Comp. Phys., vol. 107, p. 239-253, 1993.

Jin G., Braza M., « A Two-equation turbulence model for unsteady separated flows around

airfoils », AIAA Journal, vol. 32, p. 2316-2320, 1994.

Launder B., Reece G., Rodi W., « Progress in the development of a Reynolds-stress turbulence

closure », J. of Fluid Mech., vol. 68, p. 537-566, 1975.

Lefrançois E., Modèle numérique de couplage fluide-structure pour l’étude des phénomène

aéroélastiques avec applications aux moteurs fusée, Thèse de doctorat, Université de Rouen,

McAlister K., Carr L., McCroskey W., Dynamic stall experiments on the NACA0012 airfoil,

Technical Paper n° TP 1100, NASA, 1978.

McCroskey W., « Unsteady airfoils », Ann. Rev. Fluid. Mech., vol. 14, p. 285-311, 1982.

McCroskey W., Carr L., McAlister K., « Dynamic stall experiments on oscillating airfoils »,

AIAA J., vol. 14, p. 57-63, 1976.

Menter F., « Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications »,

AIAA Journal, vol. 32, n° 8, p. 1598-1605, 1994.

Metha U., Dynamic stall of an oscillating airfoil, Report n° CP-227, AGARD, 1977.

Roe P., « Approximate Riemann solvers, parameter vectors and difference schemes », J. Comp.

Phys., vol. 43, p. 357-372, 1981.

Shima N., « A Reynolds-stress model for near-wall and low-Reynolds-number regions », J. of

Fluids Engng, vol. 110, p. 38-44, 1988.

Shu C., Osher S., « Efficient implementation of essentially non-oscillatory shock-capturing

schemes », J. Comp. Phys., vol. 77, p. 439-471, 1988.

Thomas P., Lombard C., « Geometric conservation law and its application to flow computations

on moving grids », AIAA J., vol. 17, n° 10, p. 1030-1037, 1979.

van Leer B., « Towards the ultimate conservative difference scheme: a second-order sequel to

Godunov’s method », J. Comp. Phys., vol. 32, p. 101-136, 1979.

Yee H., Upwind and symmetric shock-capturing schemes, Technical Memorandum n° TM-

, NASA, May, 1987.

Downloads

Published

2007-09-26

How to Cite

Bourdet, S. ., Braza, M. ., Hoarau, Y. ., Akoury, R. E. ., Ashraf, A. ., Harran, G. ., Chassaing, P. ., & Djeridi, H. (2007). Prediction and physical analysis of unsteady flows around a pitching airfoil with the dynamic mesh approah. European Journal of Computational Mechanics, 16(3-4), 451–476. https://doi.org/10.13052/REMN.16.451-476

Issue

Section

Original Article