Prediction and physical analysis of unsteady flows around a pitching airfoil with the dynamic mesh approah
DOI:
https://doi.org/10.13052/REMN.16.451-476Keywords:
fluid structure interaction, airfoil, pitchingAbstract
The fluid structure interaction due to the pitching motion of a NACA0012 aerofoil has been studied numerically at moderate and high Reynolds numbers. The dynamic mesh method has been employed in the code ICARE/IMFT solving the Navier-Stokes equations in compressible flows. At high Reynolds number, the phase-averaged Navier-Stokes equations have been solved, coupled with advanced URANS modelling in the NSMB code. The vortex dynamics and especially the stall are physically captured by the dynamic mesh method and by the URANS/Organised Eddy Simulation approach.
Downloads
References
Ahmed S., Chandrasekhara M., « Reattachment studies of an oscillating airfoil dynamic stall
flowfield », AIAA J., vol. 32, n° 5, p. 1006-1012, 1994.
Aubrun S., « Etude expérimentale des structures cohérentes dans un écoulement turbulent décollé
et comparaison avec une couche de mélange », Thèse de Doctorat, Institut National
Polytechnique de Toulouse, France, 1998.
Barakos J., Drikakis G. A., « An implicit unfactored method for unsteady turbulent compressible
flow with moving boundaries », Comp. Fluids, vol. 28, p. 899-922, 1999.
Batina J., « Unsteady Euler airfoil solutions using unstructured dynamic meshes », AIAA J., vol.
, n° 8, p. 1381-1388, august, 1990.
Blaschak J., Kriegsmann G. A., « A comparative study of absorbing boundary conditions », J.
Comp. Phys., vol. 77, p. 79-130, 1988.
Bouhadji A., Analyse physique par simulation numérique de phénomènes de transition Bi et Tridimensionnels
dans l’écoulement compressible, visqueux autour d’une aile d’avion, Thèse
de doctorat, Institut National Polytechnique de Toulouse, 1998.
Bouhadji A., Bourdet S., Braza M., Hoarau Y., Rodes P., G.Tzabiras, « Turbulence Modelling
of Unsteady Flows with a Pronounced Periodic Character », Notes on Numerical Fluid
Mechanics, vol. 81, p. 87-96, 2002.
Bouhadji A., Braza M., « Compressibility effect on the 2D and 3D vortex structures in a transonic
flow around a wing », ERCOFTAC bulletin, vol. 34, p. 4-9, 1997.
Bouhadji A., Braza M., « Physical analysis of unsteady viscous flow phenomena around a
wing by Direct Navier-Stokes Simulation », 4th ECCOMAS Computational Fluid Dynamics
Conference, Athens, 1998.
Bouhadji A., Braza M., « Organised modes and shock-vortex interaction in unsteady viscous
transonic flows around an aerofoil. Part II:Reynolds number effect », J. Computers and
Fluids, vol. 32, n° 9, p. 1261-1281, 2003a.
Bouhadji A., Braza M., « Physical analysis by numerical simulation of organised modes and
shock-vortex interaction in transonic flows around an aerofoil. Part I:Mach number effect »,
J. Computers and Fluids, vol. 32, n° 9, p. 1233-1260, 2003b.
Bourdet S., Analyse physique d’écoulements compressibles instationnaires autour de structures
portantes dans le contexte d’interaction fluide-structure, Thèse de doctorat, Institut National
Polytechnique de Toulouse, 2005.
Bradshaw P., Atwell N., Ferris D., « Calculation of boundary layer development using the
turbulent energy equation », J. of Fluid Mech., vol. 28, p. 593-616, 1967.
BrazaM., « Flow Physics Modelling in Fluid-Structure Interaction », Notes on Numerical Fluid
Mechanics, dedicated volume "Progress in Computational Flow-Structure Interaction ",
Sci. Eds. W. Haase, V. Selmin, B. Winzell, Publisher Springer, vol. 81, p. 145-154, 2002.
Braza M., Perrin R., Hoarau Y., « Turbulence Properties in the cylinder wake at high Reynolds
number », J. Fluids. Struct., vol. in print, p. 1-16, 2006.
Carr L., McAlister K., McCroskey W., Analysis of the developpment of dynamic stall base on
oscillating airfoils experiments, Technical Notes n° TN-D-8382, NASA, 1977.
Chandrasekhara M., Carr L., « Flow visualisations studies of the Mach number effets on dynamic
stall », J. Aircraft, vol. 27, p. 516-522, 1990.
Chien K., « Predictions of channel and boundary-layer flows with a low-Reynolds number
turbulence model », AIAA Journal, vol. 20, p. 33-38, 1982.
Choudhuri G., Knight D., « Effects of compressibility, pitch rate, and Reynolds number on
unsteady incipient leading -edge boundary layer separation over a pitching airfoil », J. Fluid
Mech., vol. 308, p. 195-217, 1996.
Daly B., Harlow F., « Transport equations in turbulence », Physics of Fluid, vol. 13, p. 2634-
, 1970.
Dervieux A., Braza M., Dussauge J., « Computation and comparison of efficient turbulence
models in aeronautics », Notes on Numerical Fluid Mechanics, vol. 65, Vieweg, 1998.
Djeridi H., Braza M., Perrin R., Harran G., Cid E., Cazin S., « Near-Wake Turbulence Properties
Around a Circular Cylinder at High Reynolds Number », J. Flow Turbulence and
Combustion, vol. 71, p. 19-34, 2003.
Farhat C., Degand C., Koobus B., LesoinneM., « Torsional springs for two-dimensional dynamics
unstructured fluid meshes », Comput. Methods Appl.Mech. Engrg., vol. 163, p. 231-245,
Favier D., Maresca C., Berton E., Allain C., « Etude Expérimentale et Numérique Du
Développement de la Couche Limite Instationnaire sur Modèles Oscillants En Écoulements
D/3D », D.R.E.T., Convention no 95-052, Rapport final de synthèse, Mai, 1998.
Guo W., Fu D., Ma Y., « Numerical investigation of dynamic stall of an oscillating airfoil », Int.
J. Numer. Methods Fluids, vol. 10, p. 723-734, 1994.
Haase W., Selmin V., Winzell B., « Progress in Computational Flow-Structure Interaction, Results
of the Project UNSI, Supported by the European Union 1998 - 2000 », Notes on Num.
Fluid Mech. and Multidisciplinary Design, 2002.
Hoarau Y., Braza M., Ventikos Y., Faghani D., Tzabiras G., « Organized modes and the
three-dimensional transition to turbulence in the incompressible flow around a NACA0012
wing », J. Fluid Mech., vol. 496, p. 63-72, 2003.
Hoarau Y., Favier D., Braza M., P.Rodes, G.Tzabiras, Allain C., Berton E., Maresca C., « Turbulence
Modelling of Unsteady Flows with a Pronounced Periodic Character », IUTAM
Symposium on Unsteady Separated Flows, 8-12 April 2002, Toulouse, France, 2002.
Jin G., Braza M., « A non-reflecting outlet boundary condition for incompressible unsteady
Navier-Stokes calculations », J. Comp. Phys., vol. 107, p. 239-253, 1993.
Jin G., Braza M., « A Two-equation turbulence model for unsteady separated flows around
airfoils », AIAA Journal, vol. 32, p. 2316-2320, 1994.
Launder B., Reece G., Rodi W., « Progress in the development of a Reynolds-stress turbulence
closure », J. of Fluid Mech., vol. 68, p. 537-566, 1975.
Lefrançois E., Modèle numérique de couplage fluide-structure pour l’étude des phénomène
aéroélastiques avec applications aux moteurs fusée, Thèse de doctorat, Université de Rouen,
McAlister K., Carr L., McCroskey W., Dynamic stall experiments on the NACA0012 airfoil,
Technical Paper n° TP 1100, NASA, 1978.
McCroskey W., « Unsteady airfoils », Ann. Rev. Fluid. Mech., vol. 14, p. 285-311, 1982.
McCroskey W., Carr L., McAlister K., « Dynamic stall experiments on oscillating airfoils »,
AIAA J., vol. 14, p. 57-63, 1976.
Menter F., « Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications »,
AIAA Journal, vol. 32, n° 8, p. 1598-1605, 1994.
Metha U., Dynamic stall of an oscillating airfoil, Report n° CP-227, AGARD, 1977.
Roe P., « Approximate Riemann solvers, parameter vectors and difference schemes », J. Comp.
Phys., vol. 43, p. 357-372, 1981.
Shima N., « A Reynolds-stress model for near-wall and low-Reynolds-number regions », J. of
Fluids Engng, vol. 110, p. 38-44, 1988.
Shu C., Osher S., « Efficient implementation of essentially non-oscillatory shock-capturing
schemes », J. Comp. Phys., vol. 77, p. 439-471, 1988.
Thomas P., Lombard C., « Geometric conservation law and its application to flow computations
on moving grids », AIAA J., vol. 17, n° 10, p. 1030-1037, 1979.
van Leer B., « Towards the ultimate conservative difference scheme: a second-order sequel to
Godunov’s method », J. Comp. Phys., vol. 32, p. 101-136, 1979.
Yee H., Upwind and symmetric shock-capturing schemes, Technical Memorandum n° TM-
, NASA, May, 1987.