Fluid-structure interaction in rocket engines
Analysis of side-loads resulting from rigid body rotation
DOI:
https://doi.org/10.13052/EJCM.19.637-652Keywords:
fluid-structure interaction, side-loads, over expanded rocket nozzle, rigid body motions, finite elementsAbstract
Numerical approaches to predict side-loads on over-expanded launcher engines, resulting from the aeroelasticity, are proposed in this study: a stability model and a fluidstructure model. The main idea is to offer a better understanding of the repercussions likely to appear from the aeroelastic coupling in terms of side loads resulting from the motion of the compression shock and that may be responsible of damage effects on the current engines. It is notably shown the existence of a given natural torsional frequency of the nozzle for which the measured side loads are maximum, phenomenon associated with a transversal wave in the flow between both walls. These studies aim to improve the only current aeroelastic stability model in over expanded nozzle.
Downloads
References
Act, European Seminar on Rocket Nozzle Flows, octobre, 1998.
Bisplinghoff R. L., Ashley H., Principles of Aeroelasticity, Wiley and Son, New York, 1975.
Boris J. P., Book D. L., « Flux-Corrected Transport, I. SHASTA, a Fluid Transport Algorithm
That Works », Journal of Comp. Physics, 135, pp.172-186, (original publication : 1973),
Cormack R. W. M., « Numerical Computation of Compressible Viscous Flow », February,
, Stanford University course.
Deck S., Anh T., « Unsteady side loads in a thrust-optimized contour nozzle at hysteresis regime
», AIAA journal ISSN 0001-1452 CODEN AIAJAH, vol. 42, no 9, pp. 1878-1888,
Délery J., Traité d’aérodynamique compressible - Volume 3 : application de la théorie des
caractéristiques et écoulements transsoniques, Lavoisier, 2008.
Dhatt G., Touzot G., Lefrançois E., Méthode des éléments finis, Hermès, 2005.
Dowell E. H., Aeroelasticity of plates and shells, Noordhoff International Publishing, 1975.
Farhat C., « High Performance Simulation of Coupled Nonlinear Transient Aeroelastic Problems
», Ecole d’Eté - Porquerolles (France) 1-6 Juillet, 1996.
Farhat C., LesoinneM.,Maman N., « Mixed explicit/implicit time integration of coupled aeroelastic
problems : three-field formulation, geometric conservation and distributed solution »,
Int. J. for Num. Meth. in Fluids, Vol. 21, pp. 807-835, 1995.
FreyM., Hagemann G., « Flow Separation and Side-Loads in Rocket Nozzles », AIAA 99-2815,
Fung Y. C., An Introduction to the Theory of Aeroelasticity, Wiley and Son, New York, 1958.
Geist A., Beguelin A., al., PVM 3 User’s Guide and Reference Manual, Technical report, Oak
Ridge National Laboratory, May, 1994.
Guillard H., Farhat C., « On the significance of the geometric conservation law for flow computations
frey on moving meshes », Comput. Methods Appl. Mesh. Engrg. 190, pp. 1467-1482,
Hendrickson B., Leland R., « The CHACO user’s guide, version 2.0 », Sandia National Laboratories,
Kessy E., Decomposition de domaine et calcul parallele distribue : Application a la mecanique
des fluides, PhD thesis, LMFN-CORIA, Université Rouen - France, 1997.
Kondo N., Tosaka N., al., « Numerical simulation for coupled system of viscous flow and elastic
shell », Numerical Methods in Laminar and Turbulent Flow, Vol. 4, Part 2, p 1798, 1987.
Kudryavtsev A., Hadjadj A., « Visualisation graphique en mécanique des fluides », Flu Visu
conference, Rouen (FR), June, 2001.
Lax P. D., Wendroff B., « Systems of Conservation Laws », Comm. Pure and Applied Mathematics,
: pp. 217-237, 1960.
Lefrançois E., « Numerical validation of a stability model for a flexible over-expanded rocket
nozzle », International Journal for Numerical Methods in Fluids,Vol. 49, pages 349-369,
Lefrançois E., « A simple mesh deformation technique for fluid-structure interaction based on a
submesh approach », Int. J. for Num. Meth. in Engineering, No 75, pages 1085-1101, 2008.
Lefrançois E., Dhatt G., Vandromme D., « Fluid-Structural Interactions with Applications to
Rocket Engines », International Journal for Numerical Methods in Fluids,Vol. 30 - 1999,
pages 865-895, 1999.
Lefrançois E., Dhatt G., Vandromme D., « Numerical Study of the Aeroelastic Stability of an
Overexpanded Rocket Nozzle », Revue européenne des éléments finis, Vol. 9 - No 6/2000,
pages 727-762, 2000.
Östlung J., Flow Processes in Rocket Engine Nozzles with Focus on Flow Separation and Side-
Loads, PhD thesis, Royal Institute of Technology, Dept. of Technology, S 100 - 44, Stockholm,
Sweden, 2002.
Östlung J., Damgaard T., Frey M., « Side-load Phenomena in Highly Overexpanded Rocket
Nozzles », 37th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference and exhibit, July 8-
, Salt Lake City, 2001.
Pekkari L. O., « Aeroelastic Stability of Supersonic Nozzles with Separated Flow», AIAA, 29th
Joint Propulsion Conference and Exhibit, Monterey, CA, 1993.
Piperno S., Staggered time integration methods for a one-dimensional euler aeroelastic problem,
Technical report, CERMICS, INRIA - Sophia-Antipolis, France, Décembre, 1994.
Schwane R., Wong H., Torngren L., « Validation of Unsteady Turbulent Flow Predictions for
Over-expanded Rocket Nozzles », Proceedings of International Conference in CFD2, Sydney,
Australia, Springer-Verlag, Berlin, July, 2002.
Summerfield M., Foster C., Swan W., « Flow separation in overexpanded supersonic exhaust
nozzles », Jet Propulsion, vol. 24, n° 9, p. 319-320, September, 1954.
Tallec P. L.,Mouro J., Structures en grands déplacements couplées à des fluides en mouvement,
Technical report, INRIA - No 2961, Août, 1996.
Tuovila W. J., Land N. S., Experimental Study of Aeroelastic Instability of Overexpanded Rocket
Nozzle Extensions, Technical report, NASA TN D-4471, April, 1968.
Wong H., « Theoretical Prediction of Resonance in Nozzle Flows », Journal of Propulsion and
Power, Vol.21, No.2, pp. 300-313., 2005.
Zalesak S. T., « Fully multidimensionnal flux-corrected transport algorithms for fluids », J.
Comput. Phys., 31, p.335, 1979.
Zienkiewicz O. C., Taylor R. L., The finite element method, Vol. 1, 2 and 3, Fifth edition,
Butterworth-Heinemann, 2000.