Idealization of CAD model for a simulation by a finite element method

Authors

  • Mounir Hamdi Laboratoire de Génie Mécanique Ecole Nationale d’Ingénieurs de Monastir 5 avenue Ibn El Jazzar 5019 Monastir Tunisie
  • Nizar Aifaoui Laboratoire de Génie Mécanique Ecole Nationale d’Ingénieurs de Monastir 5 avenue Ibn El Jazzar 5019 Monastir Tunisie
  • Borhen Louhichi Laboratoire de Génie Mécanique Ecole Nationale d’Ingénieurs de Monastir 5 avenue Ibn El Jazzar 5019 Monastir Tunisie
  • Abdelmajid BenAmara Laboratoire de Génie Mécanique Ecole Nationale d’Ingénieurs de Monastir 5 avenue Ibn El Jazzar 5019 Monastir Tunisie

DOI:

https://doi.org/10.13052/EJCM.19.419-439

Keywords:

CAD geometry, integration, idealization, simulation, optimization, FEM

Abstract

Nowadays, numeric simulation becomes one of the most important activities of the product development cycle. To accelerate the design and simulation tasks, it is necessary to adapt the CAD model before the simulation process. This paper presents a method based on an original algorithm in order to adapt and simplify the design geometric model to a simulation by finite elements method. It consists in the idealization of the CAD geometry by eliminating details (holes, chamfers, etc.). These details increase the computing time due to a refined mesh in these details, which are considered as stress hubs, without providing more precision in the simulation. An implementation of the proposed algorithm using the Open Cascade platform is also presented. The last part of this paper presents two examples of mechanical parts, which are simulated before and after idealization. The results of simulation illustrate the major contribution of the proposed method in terms of computing time gain, without so much changing the exactitude of results.

Downloads

Download data is not yet available.

References

Aifaoui N., Intégration CAO/Calcul : une approche par les features de calcul, Thèse de

Doctorat, Université de Valenciennes, 2003.

Andújar C., Brunet P., Ayala D., “Topology reducing surface simplification using discrete

solid representation”, ACM Transactions on Graphics, vol. 21, n° 2, 2002, p. 88-105.

Armstrong C. G., Donaghy R. J., Bridgett S. J., “Derivation of appropriate Idealisations in

Finite Element Modelling”, 3th International Conference on Computational Structures

technology, Budapest, 1996.

Belaziz M., Bouras A., Brun, “Morphological analysis for product design”, CAD Computer

Aided Design, vol. 32, n° 5-6, 2000.

Benamara A., Contribution à l’intégration de la composante calcul dans une démarche de

conception fonctionnelle intégrée, application aux mécanismes, Thèse de doctorat,

université de Valenciennes, décembre 1998.

Benhafida Y., Troussier N., Boudaoud N., and Cherfi Z., « Méthode d’aide à l’idéalisation de

modèles issus de la CAO pour le calcul de structures », Mecanique & Industries,vol. 6,

Chong C. S., Kumar A. S., Lee K. H., “Automatic solid decomposition and reduction for nonmanifold

geometric model generation”, CAD Computer Aided Design, vol. 36, n° 13,

, p. 1357-1369.

Date H., Kanai S., Kishinami T., Nishigaki I., “Flexible feature and resolution control of

triangular meshes”, Proceedings of the Sixth IASTED International Conference on

Visualization, Imaging and Image Processing, Palma de Mallorc, Spain, 2006.

Donaghy R. J., Armstrong C. G., Price M. A., “Dimensional reduction of surface models for

analysis”, Engineering with computers, vol. 16, n° 1, 2000, p. 24-35.

Foucault G., Cuillière J., François V., Léon J., “Adaptation of CAD model topology for finite

element analysis”, CAD Computer Aided Design, vol. 40, n° 2, 2008, p. 176-196.

Hamdi M., Aifaoui N., Benamara A., « Etat de l’art des méthodes d’idéalisation en CAO »,

CMSM’07, Monastir 2007.

He T., Hong L., Kaufman A., Varshney A., Wang S., “Voxel based object simplification”,

Proceedings of Visualization’95, Atlanta. GA, 1995.

Inouea K., Itoha T., Yamadaa A., Furuhatab T., Shimadac K., “Face clustering of a largescale

CAD model for surface mesh generation”, CAD Computer Aided Design, vol. 33,

n° 3, 2001, p. 251-261.

Joshi S., Chang T. C., “Graph-based heuristics for recognition of machined features from a 3d

solid model”, CAD Computer Aided Design, vol. 20, n° 2, 1988, p. 58-66.

Joshi N., Dutta D., “Feature simplification techniques for freeform surface models”, Journal

of Computing and Information Science in Engineering, 3, 2003, p. 177-186.

Kim S., Lee K., Hong T., Kim M., Jung M., Song Y., “An integrated approach to realize

multi-resolution of B-Rep model”, Proceedings of the 2005 ACM Symposium on Solid

and Physical Modeling, Cambridge, MA, 2005.

Lee J. Y., Lee J. H., Kim H., Kim H. S., “A Cellular topology-based approach to generating

progressive solid models from feature-centric models”, CAD Computer-Aided Design,

vol. 36, n° 3, 2004, p. 217-229.

Lee S. H., “A CAD-CAE integration approach using feature-based multiresolution and multiabstraction

modeling techniques”, CAD Computer Aided Design, vol. 37, n° 9, 2005,

p. 941-955.

Lee S. H., “Feature-based multiresolution modeling of solids”, ACM Transactions on

Graphics, vol. 24, n° 4, 2005, p. 1417-1441.

Lee Y. G., Lee K., “Geometric detail suppression by the Fourier transform”, CAD Computer

Aided Design, vol. 30, n° 9, 1998, p. 677-693.

Louhichi B., Benamara A., François V., “Automatic reconstruction of CAD model from a

deformaed mesh”, European Journal of Computational Mechanics, vol 18, n° 3-4, 2009,

p. 177-194.

Rezayat M., “Midsurface abstraction from 3d solid models : general theory and applications”,

CAD Computer Aided Design, vol. 28, n° 11, 1998.

Ribelles K., Heckbert P. S., Garland M., Stahovich T., Shivastava V., “Finding and removing

features from polyhedra”, Proceedings of ASME DETC’01, Pittsburgh, PA, 2001.

Sheffer A., “Model simplification for meshing using face clustering”, CAD Computer Aided

Design, vol. 33, n° 13, 2001, p. 925-934.

Sheffer A., Blacker T. D., Clustering M., “Automated detail suppression using virtual

topolgy”, ASME, 1997, p. 57-64.

Sud A., Foskey M., Manocha D., “Homotopy-preserving medial axis simplification”,

Proceedings of the 2005 ACM symposium on Solid and physical modeling, Cambridge,

MA, 2005.

Thakur A., Banerjee A.G., Gupta S.K., “A survey of CAD model simplification techniques

for physics-based simulation applications”, CAD Computer Aided Design, 41, 2009,

p. 65-80.

Venkataraman S., Sohoni M., “Reconstruction of feature volumes and feature suppression”,

Proceedings of the seventh acm symposium on solid modeling and applications, ACM

Press, 2002, p. 60-71.

Venkataraman S., Sohoni M., Elber G., “Blend recognition algorithm and applications”,

Proceedings of the sixth acm symposium on solid modeling and applications, ACM

Press, 2001, p. 99-108.

Venkataraman S., Sohoni M., Kulkarni V., “A graph-based framework for feature

recognition”, Proceedings of the sixth acm symposium on solid modeling and

applications, ACM Press, 2001, p. 194-205.

Venkataraman S., Sohoni M., Rajadhyaksha R., “Removal of blends from boundary

representation models”, Proceedings of the seventh acm symposium on solid modeling

and applications, ACM Press, 2002, p. 83-94.

Westphal M., L’avenir de l’analyse mécanique, CAD Magazine, vol. 126, 2005, p. 23-25.

Zhu H., Menq C. H., “B-rep model simplification by automatic fillet/round suppressing for

efficient automatic feature recognition”, CAD Computer Aided Design, vol. 34, n° 2,

, p. 109-123.

Downloads

Published

2010-08-06

How to Cite

Hamdi, M. ., Aifaoui, N. ., Louhichi, B., & BenAmara, A. . (2010). Idealization of CAD model for a simulation by a finite element method. European Journal of Computational Mechanics, 19(4), 419–439. https://doi.org/10.13052/EJCM.19.419-439

Issue

Section

Original Article