A non-concurrent multiscale method for computing the response of hyperelastic heterogeneous structures

Authors

  • Julien Yvonnet Université Paris-Est, MSME UMR 8208 CNRS 5 Bd Descartes, F-77545 Marne-la Vallée cedex 2
  • Qi- Chang He Université Paris-Est, MSME UMR 8208 CNRS 5 Bd Descartes, F-77545 Marne-la Vallée cedex 2

DOI:

https://doi.org/10.13052/EJCM.19.105-116

Keywords:

nonlinear homogenization, composites, multiscale methods, method of numerically explicit potentials

Abstract

We propose a new numerical method for computing the response of structures made of heterogeneous nonlinear elastic materials. The first step is to define a representative volume element (r.v.e.) associated to the microstructure. Then, the effective potential, or the overall strain density function, is computed numerically for a finite set of points in the macroscopic strains space. In the computation of structure, stress and tangent stiffness tensors can be obtained through interpolation and derivation in the discrete set of potential values. Material properties contrast, anisotropy and morphology of microstructure are arbitrary.

Downloads

Download data is not yet available.

References

Carol J., Chang J., « Analysis of individual differences in multidimensional scaling via an Nway

generalization of ’Eckart-Young’ decomposition », Psychometrika, vol. 35, p. 283-319,

Feyel F., « Multiscale FE2 elastoviscoplastic analysis of composite structure finite element

modeling », Comput. Mater. Sci., vol. 16, n° 1-4, p. 433-454, 1999.

Habermann C., Kindermann F., « Multidimensional spline interpolation : theory and applications

», Comput. Econ., vol. 30, p. 153-169, 2007.

Hill R., « On constitutive macro-variables for heterogeneous solids at finite strain », Proc. R.

Soc. Lond. A, vol. 326, p. 131-147, 1972.

Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D., « Determination of the size of the representative

volume element for random composites : statistical and numerical approach »,

International Journal of Solids and Structures, vol. 40, p. 36473679, 2003.

Kiers H., « Toward a standardized notation and terminology in multiway analysis », J. Chemo-

metr., vol. 14, p. 105-122, 2000.

Kouznetsova V., Geers M., Brekelmans W., « Multi-scale second order computational homogenization

of multi-phase materials : a nested finite element solution strategy », Comput.

Meth. Appl. Mech. Eng., vol. 193, p. 5525-5550, 2004.

Smit R., Brekelmans W. M. H., « Prediction of the mechanical behavior of nonlinear heterogeneous

systems by multi-level finite element modeling », Comput. Meth. Appl. Mech. Eng.,

vol. 155, p. 181-192, 1998.

Suquet P., « Nonlinear Composites », Adv. Appl. Mech., vol. 34, p. 171-302, 1998.

Willis J., « The overall response of nonlinear composite media », Eur. J. Mech. A/Solids, vol.

, p. 165-184, 2000.

Yvonnet J., Gonzalez D., He Q.-C., « Numerically explicit potentials for the homogenization

of nonlinear elastic heterogeneous materials », Comput. Meth. Appl. Mech. Eng., vol. 198,

n° 3, p. 2723-2737, 2009.

Yvonnet J., He Q.-C., « The Reduced Model Multiscale Method (R3M) for the non-linear

homogenization of hyperelastic media at finite strains », J. Comput. Phys, vol. 223, p. 341-

, 2007.

Downloads

Published

2010-08-06

How to Cite

Yvonnet, J., & Chang He, Q.-. (2010). A non-concurrent multiscale method for computing the response of hyperelastic heterogeneous structures. European Journal of Computational Mechanics, 19(1-3), 105–116. https://doi.org/10.13052/EJCM.19.105-116

Issue

Section

Original Article

Most read articles by the same author(s)