A non-concurrent multiscale method for computing the response of hyperelastic heterogeneous structures
DOI:
https://doi.org/10.13052/EJCM.19.105-116Keywords:
nonlinear homogenization, composites, multiscale methods, method of numerically explicit potentialsAbstract
We propose a new numerical method for computing the response of structures made of heterogeneous nonlinear elastic materials. The first step is to define a representative volume element (r.v.e.) associated to the microstructure. Then, the effective potential, or the overall strain density function, is computed numerically for a finite set of points in the macroscopic strains space. In the computation of structure, stress and tangent stiffness tensors can be obtained through interpolation and derivation in the discrete set of potential values. Material properties contrast, anisotropy and morphology of microstructure are arbitrary.
Downloads
References
Carol J., Chang J., « Analysis of individual differences in multidimensional scaling via an Nway
generalization of ’Eckart-Young’ decomposition », Psychometrika, vol. 35, p. 283-319,
Feyel F., « Multiscale FE2 elastoviscoplastic analysis of composite structure finite element
modeling », Comput. Mater. Sci., vol. 16, n° 1-4, p. 433-454, 1999.
Habermann C., Kindermann F., « Multidimensional spline interpolation : theory and applications
», Comput. Econ., vol. 30, p. 153-169, 2007.
Hill R., « On constitutive macro-variables for heterogeneous solids at finite strain », Proc. R.
Soc. Lond. A, vol. 326, p. 131-147, 1972.
Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D., « Determination of the size of the representative
volume element for random composites : statistical and numerical approach »,
International Journal of Solids and Structures, vol. 40, p. 36473679, 2003.
Kiers H., « Toward a standardized notation and terminology in multiway analysis », J. Chemo-
metr., vol. 14, p. 105-122, 2000.
Kouznetsova V., Geers M., Brekelmans W., « Multi-scale second order computational homogenization
of multi-phase materials : a nested finite element solution strategy », Comput.
Meth. Appl. Mech. Eng., vol. 193, p. 5525-5550, 2004.
Smit R., Brekelmans W. M. H., « Prediction of the mechanical behavior of nonlinear heterogeneous
systems by multi-level finite element modeling », Comput. Meth. Appl. Mech. Eng.,
vol. 155, p. 181-192, 1998.
Suquet P., « Nonlinear Composites », Adv. Appl. Mech., vol. 34, p. 171-302, 1998.
Willis J., « The overall response of nonlinear composite media », Eur. J. Mech. A/Solids, vol.
, p. 165-184, 2000.
Yvonnet J., Gonzalez D., He Q.-C., « Numerically explicit potentials for the homogenization
of nonlinear elastic heterogeneous materials », Comput. Meth. Appl. Mech. Eng., vol. 198,
n° 3, p. 2723-2737, 2009.
Yvonnet J., He Q.-C., « The Reduced Model Multiscale Method (R3M) for the non-linear
homogenization of hyperelastic media at finite strains », J. Comput. Phys, vol. 223, p. 341-
, 2007.