Méthodes sans maillage de type éléments naturels pour la simulation des procédés de mise en forme
Keywords:
meshless methods, natural elements, forming processes simulationAbstract
In this paper, numerical simulations of forming processes are presented. A natural neighbor Galerkin method is used. One issue in this technique is the treatment of non-convex domains. To circumvent this problem, two approaches are used, the alpha-NEM and the CNEM. Another difficulty in the NEM is to achieve p-adaptivity. For this purpose, a new Hermite- NEM scheme is proposed to construct higher-order approximation schemes in the NEM.
Downloads
References
Belytschko T., Lu Y. Y., Gu L., « Element-free Galerkin methods », International Journal for
Numerical Methods in Engineering, vol. 37, p. 229-256, 1994.
Cueto E., Sukumar N., Calvo B., Martínez M. A., Cegoñino J., Doblaré M., « Overview and
recent developments in Natural Neighbour Galerkin methods », Archives of Computational
Methods in Engineering, vol. 10 (4), p. 307-384, 2003.
González D., Cueto E., Doblaré M., « Volumetric locking in Natural Neighbour Galerkin methods
», International Journal For Numerical Methods In Engineering, vol. 61 (4), p. 611-
, 2004.
LiuW. K., Jun S., Zhang Y. F., « Reproducing Kernel Particle Methods », International Journal
for Numerical Methods in fluids, vol. 21, p. 1081-1106, 1995.
Martínez M. A., Cueto E., Alfaro I., Doblaré M., Chinesta F., « Updated Lagrangian free surface
flow simulations with Natural Neighbour Galerkin methods », International Journal for
Numerical Methods in Engineering, vol. 60(13), p. 2105-2129, 2004.
Piper B., « Properties of local coordinates based on Dirichlet tessellations », Computer Suppl,
vol. 8, p. 227-239, 1995.
Yvonnet J., Chinesta F., Ryckelynck D., Lorong P., « The Meshless Constrained Natural Element
Method (C-NEM) for Treating Thermal Models Involving Moving Interfaces », International
Journal of Thermal Sciences, vol. 44, p. 559-569, 2005a.
Yvonnet J., Ryckelynck D., Lorong P., Chinesta F., « A New Extension of the Natural Element
Method for Non Convex and Discontinuous Problems : the Constrained Natural Element
Method », International Journal for Numerical Methods in Engineering, vol. 60(8), p. 1451-
, 2004.
Yvonnet J., Ryckelynck D., Lorong P., Chinesta F., « Simulating thermo-elato-plasticity in
large transformations with adaptive refinement in the natural element method : application
to shear banding », International Journal of Forming Processes, vol. 8, p. 347-373, 2005b.
Yvonnet J., Villon P., Chinesta F., « Approximations involving bubbles for treating incompressible
media », International Journal for Numerical Methods in Engineering, n.d.