A direct numerical integration scheme for visco-hyperelastic models using radial return relaxation

Authors

  • Stéphane Lejeunes Laboratoire de Mécanique et d’Acoustique de Marseille (CNRS UPR7051) 31 ch Joseph-Aiguier, F-13402 Marseille
  • Stéphane Méo Laboratoire de Mécanique et Rhéologie de l’Université de Tours 7 Avenue Marcel Dassault, F-37200 Tours
  • Adnane Boukamel Ecole Centrale Marseille Technopôle Château Gombert, F-13451 Marseille

DOI:

https://doi.org/10.13052/EJCM.19.129-140

Keywords:

radial return relaxation, visco-hyperelasticity, finite element method

Abstract

In this paper, a numerical integration scheme of the evolution laws for viscohyperelastic models is proposed. The starting points of the method are the exponential mapping (Reese et al., 1998) and the radial return (Weber et al., 1990; Simo, 1988). The originality of this work lies in the substitution of a differential tensorial system by a scalar one with two equations and two unknowns and in a first order Taylor expansion of them. In this way an analytical approximated exponential solution is finally obtained.

Downloads

Download data is not yet available.

References

Areias P., Matouš K., “ Finite element formulation for modeling nonlinear viscoelastic elastomers”,

Computer Methods in Applied Mechanics and Engineering, vol. 197, p. 4702-

, 2008.

Fancello E., Vassoler J., Stainier L., “ A variational constitutive update algorithm for a set

of isotropic hyperelastic-viscoplastic material models”, Computer Methods in Applied Mechanics

and Engineering, vol. 197, p. 4132-4148, 2008.

Fehlberg E., “ Low-order classical runge-kutta formulas with step size control and their application

to some heat transfer problems.”, Tech. rep.,NASA TR, vol. R-, p. 315, 1969.

Foerch R., Besson J., Cailletaud G., Pivlin P., “ Polymorphic constitutive equations in finite

element codes”, Comput. Methods Appl. Mech. Engrg., vol. 141, p. 355-372, 1996.

Iserles. A., Marthinsen A., Nørsett S., “ On the implementation of the method of magnus series

for linear differential equations.”, BIT Numerical Mathematics, vol. 39, p. 281-304, 1999.

Lejeunes S., Modélisation de structures lamifiées élastomère-métal à l’aide d’une méthode de

réduction de modèles, PhD thesis, Université d’Aix-Mareille II, 2006.

Nedjar B., “ Frameworks for finite strain viscoelastic-plasticity based on multiplicative decomposition.

II: Computational aspects”, Computer Methods in Applied Mechanics and Engineering,

vol. 191, p. 1563-1593, 2002a.

Nedjar B., “ Frameworks for finite strain viscoelastic-plasticity based on multiplicative decomposition.

Part I: Continuum formulations”, Computer Methods in Applied Mechanics and

Engineering, vol. 191, p. 1541-1562, 2002b.

Reese S., Govindjee S., “ A theory of finite viscoelasticity and numerical aspects.”, International

Journal of Solid and Structures, vol. 35, p. 3455-3482, 1998.

Sidoroff F., “ The geometrical concept of intermediate configuration and elastic finite strain”,

Arch. Mech., vol. 25, n° 2, p. 299-309, 1973.

Sidoroff F., “ Variables internes en viscoélasticité, 2. Milieux avec configuration intermédiaire”,

J. Méc., vol. 14, n° 4, p. 571-595, 1975.

Sidoroff F., “ Variables internes en viscoélasticité, 3. Milieux avec plusieurs configurations

intermédiaires”, J. Méc., vol. 15, n° 1, p. 85-118, 1976.

Simo J.-C., “ A framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation

and the Multiplicative Decomposition: Part II. Computational Aspects.”, Computer

Methods in Applied Mechanics and Engineering, vol. 79, p. 1-31, 1988.

Simo J., Hugues T., Computational inelasticity, 2000.

Weber G., Arnand L., “ Finite deformation constitutive equations and a time integration procedure

for isotropic hyperelastic-viscoplastic solids.”, Computer Methods in Applied Mechanics

and Engineering, vol. 79, p. 173-202, 1990.

Downloads

Published

2010-08-06

How to Cite

Lejeunes, S. ., Méo, S., & Boukamel, A. . (2010). A direct numerical integration scheme for visco-hyperelastic models using radial return relaxation. European Journal of Computational Mechanics, 19(1-3), 129–140. https://doi.org/10.13052/EJCM.19.129-140

Issue

Section

Original Article