Model reduction method: an application to the buckling analysis of laminated rubber bearings

Authors

  • Stéphane Lejeunes Ecole Généraliste d'Ingénieurs de Marseille IMT/Technopôle Chateau-Gombert, F-13451 Marseille Cedex 20 Laboratoire de Mécanique et d'Acoustique de Marseille 31 chemin Joseph-Aiguier, F-13402 Marseille cedex 20
  • Adnane Boukamel Ecole Généraliste d'Ingénieurs de Marseille IMT/Technopôle Chateau-Gombert, F-13451 Marseille Cedex 20 Laboratoire de Mécanique et d'Acoustique de Marseille 31 chemin Joseph-Aiguier, F-13402 Marseille cedex 20
  • Bruno Cochelin Ecole Généraliste d'Ingénieurs de Marseille IMT/Technopôle Chateau-Gombert, F-13451 Marseille Cedex 20 Laboratoire de Mécanique et d'Acoustique de Marseille 31 chemin Joseph-Aiguier, F-13402 Marseille cedex 20

Keywords:

model reduction, hyperelasticity, nite element, stability, bifurcation, continuation

Abstract

In this paper, we apply a model reduction method to nd the equilibrium state at nite strain of geometrically complex structures which have periodic properties in one direction and exhibit a non-linear material behavior. This method, based on a nite-element approach, consists in projecting the unknowns elds onto a polynomial basis in order to reduce the size of the problem. This method was combined with a continuation resolution scheme to nd the instabilities of a laminated rubber bearing subjected to compression loading. Comparisons with standard nite-element models show the reliability of the present method.

Downloads

Download data is not yet available.

References

Boukamel A., Etude théorique et expérimentale d'un stratié caoutchouc-acier en grandes dé-

formations, Thèse de doctorat, Université d'Aix-Marseille II, 1988.

Cheung Y., Kong J., The application of a new nite strip to the free vibration of rectangular

plates of varying complexity, Journal of Sound and Vibration, vol. 181, p. 341-353, 1995.

Criseld M., Non-linear Finite Element Analysis of Solids and Structures, vol. 2, Wiley, 1997.

Damil N., M. P.-F., A new method to compute perturbed bifurcations: Application to the buckling

of imperfect elastic structures, International Journal of Engineering and Sciences, vol.

, p. 943-957, 1990.

Devries F., Homogenization of elastomer matrix composites: method and validation, Composites

Part B: Engineering, vol. 29, p. 753-762, 1998.

Dumontet H., Homogénéisation et effets de bords dans les matériaux composites, Thèse d'état,

Université Pierre et Marie Curie Paris 6, 1990.

Foerch R., Besson J., Cailletaud G., Pivlin P., Polymorphic constitutive equations in nite

element codes, Comput. Methods Appl. Mech. Engrg., vol. 141, p. 355-372, 1996.

Fu Y., Ogden R. (eds), Nonlinear Elasticity: Theory and Applications, Cambridge university

press, 2001. London Mathematical Society Lecture Note Series, 283.

Glowinski R., Le Tallec P., Numerical solution of problems in incompressible nite elasticity

by augmented Lagrangian methods I. two-dimensional and axisymmetric problems, SIAM

J. Appl. Math., vol. 42, p. 400-429, 1982.

Hartmann S., Neff P., Polyconvexity of generalized polynomial-type hyperelastic strain energy

functions for near incompressibility, International Journal of Solids and Structures, vol.

, p. 2767-2791, 2003.

Herrmann L. R., Elasticity equations for incompressible and nearly-incompressible materials

by a variational theorem, AIAA J., vol. 3, p. 1896-1900, 1963.

Holzapfel G., Nonlinear Solid Mechanics, Wiley, 2004.

Iizuka M., A macroscopic model for predicting large-deformation behaviors of laminated

rubber bearings, Engineering Structures, vol. 22, p. 323-334, 2000.

Kelly J., Tension Buckling in Multilayer Elastomeric Bearings, 16th Engineering Mechanics

Conference, American Society of Civil Engineers, Seattle, july, 2003.

Lejeunes S., Boukamel A., Cochelin B., Model reduction method for composites structures

with elastomeric matrix, in Austrell, Kari (eds), Constitutive Models for Rubber IV, Taylor

& Francis Group., London, p. 391-396, 2005.

Léné F., Rey C., Some strategies to compute elastomeric lamied composite structures, Composite

Structures, vol. 54, p. 231-241, 2001.

Magnusson A., Svensson I., Numerical treatment of complete load-deection curves, Int. J.

Numer. Meth. Engng., vol. 41, p. 955-971, 1998.

Malkus D., Hughes T., Mixed nite element methods - reduced and selective integration

techniques : a unication of concepts, Comp. Meth. Appl. Mech. Eng., vol. 15, p. 63-81,

Miehe C., Aspects of the formulation and nite element implementation of large strain

isotropic elasticity, International Journal for Numerical Methods In Engineering, vol. 37,

p. 1981-2004, 1994.

Mooney M., A theory of large elastic deformation, J. Appl. Phys., vol. 11, p. 582-592, 1940.

Riks E., Some computational aspects of the stability analysis of nonlinear structures, Computers

Methods in Applied Mechanics and Engineering, vol. 47, p. 219-259, 1984.

Riks E., Buckling, in E. Stein, R. De Borst, T. J. R. Hughes (eds), Encyclopedia of Computational

Mechanics, vol. 2, Wiley, p. 139-167, 2004.

Rüter M., Stein E., Analysis, nite element computation and error estimation in transversly

isotropic nearly incompressible nite elasticity, Comput. Methods Appl. Mech. Engrg., vol.

, p. 519-541, 2000.

Zhong W., Cheung Y., Li Y., The precise nite strip method, Computers and Structures, vol.

, p. 773-783, 1998.

Downloads

Published

2006-07-05

How to Cite

Lejeunes, S. ., Boukamel, A., & Cochelin, B. . (2006). Model reduction method: an application to the buckling analysis of laminated rubber bearings. European Journal of Computational Mechanics, 15(1-3), 281–292. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2151

Issue

Section

Original Article

Most read articles by the same author(s)