Model reduction method: an application to the buckling analysis of laminated rubber bearings
Keywords:
model reduction, hyperelasticity, nite element, stability, bifurcation, continuationAbstract
In this paper, we apply a model reduction method to nd the equilibrium state at nite strain of geometrically complex structures which have periodic properties in one direction and exhibit a non-linear material behavior. This method, based on a nite-element approach, consists in projecting the unknowns elds onto a polynomial basis in order to reduce the size of the problem. This method was combined with a continuation resolution scheme to nd the instabilities of a laminated rubber bearing subjected to compression loading. Comparisons with standard nite-element models show the reliability of the present method.
Downloads
References
Boukamel A., Etude théorique et expérimentale d'un stratié caoutchouc-acier en grandes dé-
formations, Thèse de doctorat, Université d'Aix-Marseille II, 1988.
Cheung Y., Kong J., The application of a new nite strip to the free vibration of rectangular
plates of varying complexity, Journal of Sound and Vibration, vol. 181, p. 341-353, 1995.
Criseld M., Non-linear Finite Element Analysis of Solids and Structures, vol. 2, Wiley, 1997.
Damil N., M. P.-F., A new method to compute perturbed bifurcations: Application to the buckling
of imperfect elastic structures, International Journal of Engineering and Sciences, vol.
, p. 943-957, 1990.
Devries F., Homogenization of elastomer matrix composites: method and validation, Composites
Part B: Engineering, vol. 29, p. 753-762, 1998.
Dumontet H., Homogénéisation et effets de bords dans les matériaux composites, Thèse d'état,
Université Pierre et Marie Curie Paris 6, 1990.
Foerch R., Besson J., Cailletaud G., Pivlin P., Polymorphic constitutive equations in nite
element codes, Comput. Methods Appl. Mech. Engrg., vol. 141, p. 355-372, 1996.
Fu Y., Ogden R. (eds), Nonlinear Elasticity: Theory and Applications, Cambridge university
press, 2001. London Mathematical Society Lecture Note Series, 283.
Glowinski R., Le Tallec P., Numerical solution of problems in incompressible nite elasticity
by augmented Lagrangian methods I. two-dimensional and axisymmetric problems, SIAM
J. Appl. Math., vol. 42, p. 400-429, 1982.
Hartmann S., Neff P., Polyconvexity of generalized polynomial-type hyperelastic strain energy
functions for near incompressibility, International Journal of Solids and Structures, vol.
, p. 2767-2791, 2003.
Herrmann L. R., Elasticity equations for incompressible and nearly-incompressible materials
by a variational theorem, AIAA J., vol. 3, p. 1896-1900, 1963.
Holzapfel G., Nonlinear Solid Mechanics, Wiley, 2004.
Iizuka M., A macroscopic model for predicting large-deformation behaviors of laminated
rubber bearings, Engineering Structures, vol. 22, p. 323-334, 2000.
Kelly J., Tension Buckling in Multilayer Elastomeric Bearings, 16th Engineering Mechanics
Conference, American Society of Civil Engineers, Seattle, july, 2003.
Lejeunes S., Boukamel A., Cochelin B., Model reduction method for composites structures
with elastomeric matrix, in Austrell, Kari (eds), Constitutive Models for Rubber IV, Taylor
& Francis Group., London, p. 391-396, 2005.
Léné F., Rey C., Some strategies to compute elastomeric lamied composite structures, Composite
Structures, vol. 54, p. 231-241, 2001.
Magnusson A., Svensson I., Numerical treatment of complete load-deection curves, Int. J.
Numer. Meth. Engng., vol. 41, p. 955-971, 1998.
Malkus D., Hughes T., Mixed nite element methods - reduced and selective integration
techniques : a unication of concepts, Comp. Meth. Appl. Mech. Eng., vol. 15, p. 63-81,
Miehe C., Aspects of the formulation and nite element implementation of large strain
isotropic elasticity, International Journal for Numerical Methods In Engineering, vol. 37,
p. 1981-2004, 1994.
Mooney M., A theory of large elastic deformation, J. Appl. Phys., vol. 11, p. 582-592, 1940.
Riks E., Some computational aspects of the stability analysis of nonlinear structures, Computers
Methods in Applied Mechanics and Engineering, vol. 47, p. 219-259, 1984.
Riks E., Buckling, in E. Stein, R. De Borst, T. J. R. Hughes (eds), Encyclopedia of Computational
Mechanics, vol. 2, Wiley, p. 139-167, 2004.
Rüter M., Stein E., Analysis, nite element computation and error estimation in transversly
isotropic nearly incompressible nite elasticity, Comput. Methods Appl. Mech. Engrg., vol.
, p. 519-541, 2000.
Zhong W., Cheung Y., Li Y., The precise nite strip method, Computers and Structures, vol.
, p. 773-783, 1998.