Modeling of random anisotropic elastic media and impact on wave propagation
DOI:
https://doi.org/10.13052/EJCM.19.241-253Keywords:
wave in random medium, anisotropy, random fieldsAbstract
The class of stochastic non-gaussian positive-definite fields with minimal parameterization proposed by Soize (Soize, 2006) to model the elasticity tensor field of a random anisotropic material shows an anisotropy index which grows with the fluctuation level. This property is in contradiction with experimental results in geophysics where the anisotropy index remains limited whatever the fluctuation level. Hence, the main purpose of this paper is to generalize the Soize’s model in order to account independently for the anisotropy index and the fluctuation level. It is then shown that this new model leads to major differences in the wave propagation regimes.
Downloads
References
Arnst M., Inversion of probabilistic models of structures using measured transfer function, PhD
thesis, Ecole Centrale Paris, France, 2007.
Arts R. J., Étude de l’élasticité anisotrope générale dans les roches par propagation des ondes.,
PhD thesis, Université de Pierre et Marie Curie, 1993.
Auld B. A., Acoustic fields and waves in solids, vol. 1-2, John Wiley & Sons, 1973.
Basser P., Pajevic S., “ Spectral decomposition of a 4th-order covariance tensor : Application
to diffusion tensor MRI”, Signal Processing, vol. -, n° 87, p. 220-236, 2007.
Bécache E., Fauqueux S., Joly P., “ Stability of perfectly matched layers, group velocities and
anisotropic waves”, Journal of Computational Physics, vol. -, n° 188, p. 399-433, 2003.
Carcione J.-M., Wave Fields in Real Media : Wave Propagation in Anisotropic, Anelastic,
Porous and Electromagnetic Media, vol. 38 of Hanbook of Geophysical Exploration : Seismic
Exploration, second : revised and extended edn, Elsevier, 2007.
Cerveny V., Seismic ray theory, Cambridge University Press, 2001.
Clouteau D., Aubry D., “ Modification of the ground motion in dense urban areas”, Journal of
Computational Acoustics, vol. 9, n° 4, p. 1659-1675, 2001.
Festa G., Vilotte J., “ The Newmark scheme as a velocity-stress time staggering: An efficient
PML for spectral element simulations of elastodynamics”, Geophysical Journal International,
vol. 161, n° 3, p. 789-812, 2005.
Helbig K., Foundations of Anisotropy for Exploration Seismics, Elsevier, 1994.
Meza-Fajardo K., Papageorgiou A., “ A Nonconvolutional, Split-Field, Perfectly Matched
Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis”,
Bulletin of the Seismological Society of America, vol. 98, n° 4, p. 1811-1836, 2008.
Popescu R., Stochastique variability of soil propeties : data analysis, digital simulation, effect
on system behavior, PhD thesis, Princeton University, USA, 1995.
Shinozuka M., Deodatis G., “ Simulation of multi-dimensional Gaussian stochastic fields by
spectral representation”, Applied Mechanics Review, vol. 1, n° 49, p. 29-53, 1996.
Soize C., “ Random matrix theory for modeling uncertainties in computational mechanics”,
Computer Methods in Applied Mechanics and Engineering, vol. -, n° 194, p. 1333-1366,
Soize C., “ Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic
partial differential operators”, Computer Methods in Applied Mechanics and Engineering,
vol. 1-3, n° 195, p. 26-64, 2006.
Vernik L., Liu X., “ Velocity anisotropy in shales: A petrophysical study”, Geophysics, vol. 62,
p. 521-532, 1997.