Probabilistic nonparametric model of impedance matrices

Application to the seismic design of a structure

Authors

  • Régis Cottereau Laboratoire MSSMat, École Centrale Paris Grande voie des vignes, F-92295 Châtenay-Malabry cedex
  • Didier Clouteau Laboratoire MSSMat, École Centrale Paris Grande voie des vignes, F-92295 Châtenay-Malabry cedex
  • Christian Soize LaM, Université de Marne-la-Vallée Cité Descartes, F-77454 Marne-la-Vallée cedex 2
  • Simon Cambier Électricité de France R&D, Dept AMA F-92141 Clamart cedex

Keywords:

nonparametric model, impedance, probabilistic mechanics, uncertainties

Abstract

Economic and legal pressures on the structural engineers force them to consider uncertainty in the domains interacting, through boundary impedances, with their design structure. A probabilistic model of this impedance is constructed around a mean hidden state variables model using a nonparametric method. This mean model is constructed using only deterministic tools. The methodology is applied to the design of a gas tank on a layered soil.

Downloads

Download data is not yet available.

References

Allemang R. J., Brown D. L., « A unied matrix polynomial approach to modal identication »,

Journal of Sound and Vibration, vol. 211, p. 301-322, 1998.

Arnst M., Clouteau D., Bonnet M., « Identication of probabilistic structural dynamics model:

application to Soize's nonparametric model », in C. Soize, G. I. Schuëller (eds), Eurodyn

: Proceedings of the 6th International Conference on Structural Dynamics, vol. 2,

Millpress, Paris, France, p. 823-828, September, 2005.

Bultheel A., van Barel M., « Vector orthogonal polynomials and least squares approximation »,

SIAM Journal of Matrix Analysis and its Applications, vol. 16, p. 863-885, 1995.

Chabas F., Soize C., « Modeling mechanical subsystems by boundary impedance in the nite

element method », La Recherche Aérospatiale (english edition), vol. 5, p. 59-75, 1987.

Chebli H., Soize C., « Experimental validation of a nonparametric probabilistic model of non

homogeneous uncertainties for dynamical systems », Journal of the Acoustical Society of

America, vol. 115, p. 697-705, 2004.

Clouteau D., Miss 6.3 : Manuel Utilisateur : version 2.2, École Centrale Paris, Châtenay-

Malabry, France. 2003, in french.

Cornell A. C., « First order uncertainty analysis of soils deformation and stability », Proceedings

of the rst International Conference on Applications of Statistics and Probability to Soil and

Structural Engineering, Hong-Kong, p. 129-144, 1971.

Desceliers C., Soize C., Cambier S., « Nonparametric-parametric model for random uncertainties

in nonlinear structural dynamics: Application to earthquake engineering », Earthquake

Engineering and Structural Dynamics, vol. 33, p. 315-327, 2003.

Favre J.-L., « Errors in Geotechnics and their impact on safety », Computers & Structures, vol.

, p. 37-45, 1998.

Ghanem R. G., Spanos P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag,

Guillaume P., Pintelon R., Schoukens J., « Parametric identication of multivariable systems

in the frequency domain - a survey », Proceedings of the 21st International Conference on

Noise and Vibration Engineering (ISMA), Leuven (Belgium), p. 1069-1082, 1996.

Jaynes E. T., « Information theory and statistical mechanics », Physical Review, vol. 106, p. 620-

, 1957.

Kramers H. A., « La diffusion de la lumière par les atomes », Resoconto del Congresso Internazionale

dei Fisíci, vol. 2, Como, Italy, p. 545-557, 1927. in french.

Kronig R. d., « On the theory of dispersion of X-rays », Journal of the Optical Society of

America, vol. 12, p. 547-557, June, 1926.

Pierce L. B., Hardy Functions, Junior paper, Princeton University, 2001.

http://www.princeton.edu/~lbpierce/.

Pintelon R., Rolain Y., Bultheel A., van Barel M., « Frequency domain identication of multivariable

systems using vector orthogonal polynomials », Proceedings of the 16th International

Symposium on Mathematical Theory of Networks and Systems, Leuven (Belgium),

July, 2004.

Pintelon R., Schoukens J., System identication: a frequency domain approach, IEEE Press,

Piscataway, 2001.

Ratier L., Cambier S., Berthe L., « Analyse probabiliste du désaccordement de roue de turbine »,

in , R. Ohayon, J.-P. Grellier, A. Rassineux (eds), Comptes-Rendus du 7ème Colloque National

en Calcul des Structures, vol. 1, Hermès-Lavoisier, Giens, France, May, 2005. in

french.

Savin E., Clouteau D., « Coupling a bounded domain and an unbounded heterogeneous domain

for elastic wave propagation in three-dimensional random media », International Journal

for Numerical Methods in Engineering, vol. 24, p. 607-630, 2002.

Schuëller G. I., « A state-of-the-art report on computational stochastic mechanics », Probabilistic

Engineering Mechanics, vol. 12, p. 197-321, 1997.

Soize C., « A nonparametric model of random uncertainties in linear structural dynamics », Publications

du LMA-CNRS, vol. 152, p. 109-138, Juin 1999. Journée Nationale Dynamique

Stochastique des Structures, Châtillon, France.

Soize C., « A nonparametric model of random uncertainties for reduced matrix models in structural

dynamics », Probabilistic Engineering Mechanics, vol. 15, p. 277-294, 2000.

Soize C., « Maximum entropy approach for modeling random uncertainties in transient elastodynamics

», Journal of the Acoustical Society of America, vol. 109, p. 1979-1996, May,

a.

Soize C., « Nonlinear dynamical systems with nonparametric model of random uncertainties »,

Uncertainties in Engineering Mechanics, vol. 1, p. 1-38, 2001b. http://www.resonancepub.

com.

Soize C., « Uncertain dynamical systems in the medium-frequency range », Journal of Engineering

Mechanics, vol. 129, p. 1017-1027, 2003.

Soize C., « Random matrix theory for modeling uncertainties in computational mechanics »,

Computer Methods in Applied Mechanics and Engineering, vol. 194, p. 1333-1366, 2005.

Soize C., Chebli H., « Random uncertainties model in dynamics substructuring using a nonparametric

probabilistic model », Journal of Engineering Mechanics, vol. 128, p. 449-457,

April, 2003.

Wolf J. P., Dynamic soil-structure interaction, Prentice-Hall, Inc., Englewood Cliffs, N. J.,

Downloads

Published

2006-06-15

How to Cite

Cottereau, R. ., Clouteau, D. ., Soize, C. ., & Cambier, S. . (2006). Probabilistic nonparametric model of impedance matrices: Application to the seismic design of a structure. European Journal of Computational Mechanics, 15(1-3), 131–142. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2121

Issue

Section

Original Article