A 3D Chebyshev-Fourier algorithm for convection equations in low Mach number approximation
DOI:
https://doi.org/10.13052/EJCM.18.607-625Keywords:
spectral methods, convection, low Mach numberAbstract
A three-dimensional spectral method based on Chebyshev-Chebyshev-Fourier discretizations is presented in the framework of the low Mach number approximation of Navier-Stokes equations. The working fluid is assumed to be a perfect gas with constant thermodynamic properties. The generalized Stokes problem, which arises from the time discretization by a second-order semi-implicit scheme, is solved by a preconditioned iterative Uzawa algorithm. Several validation results are presented in the case of steady and unsteady flows. This model is also evaluated for natural convection flows with large density variations in the case of a tall differentially heated cavity of aspect ratio 8. It is found that on contrary to convection at small temperature differences (Boussinesq), the 2D unsteady solution at Ra = 3.4 x 105 is unstable to 3D perturbations.
Downloads
References
Accary G., Raspo I., “ A 3D finite volume method for the prediction of supercritical fluid
buoyant flow in a differentially heated cavity”, Computer and Fluids, vol. 35, p. 1316-1331,
Becker R., Braack M., “ Solution of a stationary benchmark problem for natural convection with
large temperature difference”, International Journal of Thermal Sciences, vol. 41, p. 428-
, 2002.
Chenoweth D. R., Paolucci S., “ Natural convection in an enclosed vertical air layer with large
horizontal temperature differences”, Journal of Fluid Mechanics, vol. 169, p. 173-210,
Christon M. A., Grecho P. M., Sutton S. B., “ Computational predictability of time-dependent
natural convection flows in enclosures (including a benchmark solution)”, International
Journal for Numerical Methods in Fluids, vol. 40, p. 953-980, 2002.
Fröhlich J., Peyret R., “ Calculations of Non-Boussinesq Convection by a Pseudospectral
Method”, Computer Methods in Applied Mechanics and Engineering, vol. 80, p. 425-433,
Fröhlich J., Peyret R., “ Direct spectral methods for the low Mach number equations”, International
Journal of Numerical Methods for Heat and Fluid Flow, vol. 2, p. 195-213, 1992.
Gauthier S., “ A spectral collocation method for two dimensional compressible convection”,
Journal of computational physics, vol. 75, N◦1, p. 217-235, 1988.
Gottlieb D., Orszag S. A., “ Numerical analysis of spectral methods: Theory and applications”,
SIAM, Philadelphia, 1977.
Gray D. D., Giorgini A., “ The Validity of the Boussinesq Approximation for Liquids and
Gases”, International Journal of Heat and Mass Transfer, vol. 19, p. 545-551, 1976.
Guo Y., Bathe K. J., “ A numerical study of a natural convection flow in a cavity”, International
Journal for Numerical Methods in Fluids, vol. 40, p. 1045-1057, 2002.
Haidvogel D. B., Zang T. A., “ The accurate solution of Poisson equation in Chebyshev polynomials”,
Journal of computational physics, vol. 30, p. 167-180, 1979.
Heuveline V., “ On higher-order mixed FEM for low Mach number flows: application to a
natural convection benchmark problem”, International Journal for Numerical Methods in
Fluids, vol. 41, p. 1339-1356, 2003.
LeongW. H., Hollands K. G. T., Brunger B. A., “ On a physically realizable benchmark problem
in internal natural convection”, International Journal of Heat and Mass Transfer, vol. 41,
p. 3817-3828, 1998.
LeQuéré P., Masson R., Perrot P., “ A Chebyshev collocation algorithm for 2D non-Boussinesq
convection”, Journal of computational physics, vol. 103, p. 320-335, 1992.
LeQuéré P., Weismann C., Vierendeels H. P. J., Dicks E., et al. R. B., “ Modelling of natural
convection flows with large temperature differences: a benchmark problem for low Mach
number solvers. Part1. Reference solutions”, Math. Model. Numer. Anal., vol. 39, p. 609-
, 2005.
Maday Y., Patera A. T., Ronquist E. M., “ The PN × PN−2 method for the approximation of
the Stokes problem”, Laboratoire d’analyse numérique, Paris VI, 1992.
Mohamad A. A., Bennacer R., Azaiez J., “ Double diffusion natural convection in a rectangular
enclosure filled with binary fluid saturated porous media; The effect of lateral aspect ratio”,
Journal Physics of fluids, vol. 16, p. 184-199, 2004.
Nicoud F., “ Conservative high-order finite-difference schemes for low Mach number flows”,
Journal of computational physics, vol. 158, p. 71-97, 2000.
Paillere H., Viozat C., Kumbaro A., Toumi I., “ Comparison of low Mach number models for
natural convection problems”, Heat and Mass Transfer, vol. 36, p. 567-573, 2000.
Paolucci S., “ On the filtering of sound from the Navier-Stokes equations”, Technical report,
Sandia National Laboratories USA, 1982.
Roux B.Note on Numerical Fluids Mechanics, vol. 27, p. 227, 1990.
Saeid N. H., Mohamad A. A., “ Natural convection in a square porous cavity with spatial Sidewall
Temperature”, International journal for numerical methods for heat and fluid flow, vol.
, p. 555-566, 2005.
Vanel J. M., Peyret R., Bontoux P., “ A pseudo-spectral solution of vorticity-stream function
equations using the influence matrix technique”, Numerical methods for fluid dynamics II,
vol. , p. 463-475, 1986.
Weisman C., Calsyn L., Dubois C., LeQuéré P., “ Sur la nature de la transition à l’instationnaire
d’un écoulement de convection naturelle en cavité différentiellement chauffée à grands
écarts de température”, Compte Rendu de l’Académie des Sciences, vol. 329, Série II b,
p. 343-350, 2001.
Xin S., LeQuéré P., “ An extended Chebyshev pseudo-spectral benchmark for the 8:1 differentially
heated cavity”, International journal for numerical methods in fluids, vol. 40, p. 981-
, 2002.