Application of a recycling Krylov subspace strategy for discrete element method applied to brittle crack problems
DOI:
https://doi.org/10.13052/EJCM.18.647-667Keywords:
discrete element model, iterative solver, recycling Krylov subspacesAbstract
This paper deals with a comparative study of two iterative Krylov solvers (GIRKS and SRKS) dedicated to the solution to a sequence of large linear problems. We apply these two algorithms to brittle crack problems modelized with a discrete element method. We show that these algorithms still reduce the total number of iterations but not the total CPU time. By considering the specific modification of the stiffness matrix for discrete modeling, we propose a simple evolution of the SRK algorithm leading to a reduction of the factor time (greater than 2). Efficiency of the algorithm is illustrated on 2D and 3D examples of crack propagation.
Downloads
References
Cundall P. A., Strack O. D. L., « A discrete numerical model for granular assemblies », Géotechnique,
vol. 29, p. 47-65, 1979.
D’Addetta G. A., Discrete models for cohesive frictional materials, PhD thesis, Stuttgart University,
Delaplace A., « Tensile damage response from discrete element virtual testing », Geomechanics
and Geoengineering, vol. 4, n° 1, p. 79-89, 2009.
Delaplace A., Desmorat R., « Discrete 3D model as complimentary numerical testing for anisotropic
damage », International Journal of Fracture, vol. 148, p. 115-128, 2007.
der Sluis A. V., der Vorst H. A. V., « The rate of convergence of conjugate gradients », Numer.
Math., vol. 48, p. 543-560, 1986.
Farhat C., Roux F., « Implicit parallel processing in structural mechanics », Computational
Mechanics Advances, vol. 2, p. 1-124, 1994.
Gosselet P., Rey C., « On a selective reuse of Krylov subspaces in Newton-Krylov approaches
for nonlinear elasticity », 14th International Conference on Domain Decomposition Methods,
Gosselet P., Rey C., « Non-overlapping domain decomposition methods in structural mechanics
», Arch. Comput. Meth. Engng., vol. 13, p. 515-572, 2006.
Herrmann H. J., Roux S., Statistical models for the fracture of disordered media, Elsevier
Science Publishers, Amsterdam, 1990.
Moukarzel C., Herrmann H. J., « A vectorizable random lattice », J. Stat. Phys., vol. 68, p. 911-
, 1992.
Nukala P., Simunovic S., « An efficient block-circulant preconditioner for simulating fracture
using large fuse networks », J. Phys. A : Math. Gen., vol. 37, p. 2093-2103, 2004.
Nukala P., Simunovic S., « Large scale simulation of fracture network », ICF 11 - 11th International
Conference on Fracture, 2005.
Paige C., Parlett B. N., der Vorst H. V., « Approximate solutions and eigenvalue bounds from
Krylov subspaces », Num. Lin. Alg. Appl., vol. 2, p. 115-133, 1995.
Potyondy D. O., Cundall P. A., « A bonded-particle model for rock », International Journal of
Rock Mechanics and Mining Sciences, vol. 41, n° 8, p. 1329-1364, 2004.
Rey C., « An acceleration technique for the solution of non-linear elasticity problems by domain
decomposition », C. R. Acad. Sci., vol. 322, p. 601-606, 1996.
Rey C., Risler C., « A Rayleigh-Ritz preconditioner for the iterative solution to large scale
nonlinear problem », Numerical Algorithms, vol. 17, p. 279-311, 1998.
Risler C., Rey C., « Iterative accelerating algorithms with Krylov subspaces for the solution to
large-scale nonlinear problems », Numerical Algorithms, vol. 23, p. 1-30, 2000.
Saad Y., Iterative methods for sparse linear systems, PWS Publishing Company, 3rd edition,
Saad Y., Yeung M., Erhel J., Guyomarc’h F., « A deflated version of the conjugate gradient
algorithm », SIAM J. Sci. Comput., vol. 21, p. 1909-1926, 2000.
Van Mier J. G. M., Van Vliet M. R. A., Wang T. K., « Fracture mechanisms in particle composites
: statistical aspects in lattice type analysis »,Mech. Mater, vol. 34, p. 705-724, 2002.
Yip M., Li Z., Liao B.-S., Bolander J., « Irregular lattice models of fracture of multiphase
particulate materials », International Journal of Fracture, vol. 140, p. 113-124, 2006.