A domain decomposition method for quasi-incompressible formulations with discontinuous pressure field

Application to the mechanical study of a flexible bearing

Authors

  • Pierre Gosselet Laboratoire de Modélisation et Mécanique des Structures FRE 2505 du CNRS, UPMC 8 rue du Capitaine Scott, 75015 PARIS
  • Christian Rey Laboratoire de Modélisation et Mécanique des Structures FRE 2505 du CNRS, UPMC 8 rue du Capitaine Scott, 75015 PARIS
  • Françoise Léné Laboratoire de Modélisation et Mécanique des Structures FRE 2505 du CNRS, UPMC 8 rue du Capitaine Scott, 75015 PARIS
  • Pascal Dasset SNECMA Moteurs, 33187 Le Haillan

Keywords:

Domain decomposition method, Newton-Krylov, quasi incompressibility, mixed formulation

Abstract

We study the implementation of a domain decomposition method for structures with quasi-incompressible components. We chose a mixed formulation where the pressure field is discontinuous on the interfaces between substructures. We propose an extension of classical preconditioners to this class of problems. The numerical simulation of the mechanical behaviour of the flexible bearing of the nozzle of a solid propellant booster is then conducted using various Newton-Krylov parallel approaches. We present the main mechanical results and compare the numerical performance of the parallel approaches to a sequential approach.

Downloads

Download data is not yet available.

References

[BRE 91] BREZZI F., FORTIN M., Mixed and hybrid finite element methods, Springer series

in Computational Mathematics, 1991.

[DDM02] “Proceedings of the 14th international conference on domain decomposition methods,

Mexico”, 2002.

[FAR 94] FARHAT C., ROUX F.-X., “Implicit parallel processing in structural mechanics”,

Computational Mechanics Advances, vol. 2, 1994, p. 1-24.

[GOS 02] GOSSELET P., REY C., “On a selective reuse of Krylov subspaces for Newton

Krylov approaches in non-linear elasticity”, 14th international conference on domain

decomposition methods, Mexico, 2002.

[LAM 99] LAMBERT-DIANI J., REY C., “New phenomenological behavior laws for rubbers

and thermoplastic elastomers”, Eur. J. Mech. A/Solids, vol. 18, 1999, p. 1027-1043.

[LET 94a] LETALLEC P., “Domain Decomposition Methods in Computational Mechanics”,

Computational Mechanics Adv., vol. 1, 1994.

[LET 94b] LETALLEC P., “Numerical methods for non-linear three-dimensional elasticity”,

PG C., JL. L., Eds., Handbook of numerical analysis, vol. 3, Elsevier, 1994.

[MAN 93] MANDEL J., “Balancing domain decomposition”, Comm. Appl. Numer. Meth.,

vol. 9, 1993, p. 233-241.

[REY 96] REY C., “Une technique d’accélération de la résolution de problèmes d’élasticité

non-linéaire par décomposition de domaines”, Comptes rendus de l’académie des sciences,

vol. 322 of II b, p. 601-606, 1996.

[REY 98] REY C., RISLER F., “A Rayleigh-Ritz preconditioner for the iterative solution to

large scale nonlinear problems”, Numerical Algorithms, vol. 17, 1998, p. 279-311.

[RIS 00] RISLER F., REY C., “Iterative accelerating algorithms with Krylov subspaces for the

solution to large-scale non-linear problems”, Numer. Algorithms, vol. 23, 2000, p. 1-30.

[RIV 51] RIVLIN R., SAUNDERS D., “Large elastic deformation of isotropic materials. Experiments

on the deformation of rubber.”, Phil. Trans. Roy. Soc., vol. A243, 1951, p. 251-288.

[RIX 99] RIXEN D., FARHAT C., “A simple and efficient extension of a class of substructure

based preconditioners to heterogeneous structural mechanics problems”, Int. J. Num. Meth.

Engrg., vol. 44, 1999.

[SAA 87] SAAD Y., “On the Lanczos method for solving symmetric linear systems with several

right-hand sides”, Math. Comp., vol. 48, 1987, p. 651-662.

Downloads

Published

2002-11-03

How to Cite

Gosselet, P., Rey, C. ., Léné, F., & Dasset, P. . (2002). A domain decomposition method for quasi-incompressible formulations with discontinuous pressure field: Application to the mechanical study of a flexible bearing. European Journal of Computational Mechanics, 11(2-4), 363 – 377. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2609

Issue

Section

Original Article