New experimental techniques for dynamic crack localization
DOI:
https://doi.org/10.13052/EJCM.18.255-283Keywords:
dynamic fracture, mixed mode loading, crack localization, digital image correlation, crack arrest and restartAbstract
The determination of relevant constitutive crack propagation laws under dynamic loading is a rather challenging operation. In dynamic impact cases, the variations of propagation parameters and exact crack positions are difficult to control. This paper focuses on different techniques for measuring accurate crack tip position histories in dynamic crack propagation experiments. Two different methods are considered: very accurate crack tip localization by optical displacement sensors is first described for transparent materials; then, an automatic method based on digital image correlation is presented for crack localization in all brittle materials whatever their opacity.
Downloads
References
Fineberg J., Gross S. P.,MarderM., Swinney H. L., “ Instability in Dynamic Fracture”, Physical
Review Letters, vol. 67, n° 4, p. 457-460, 1991.
Grégoire D.,Maigre H., Réthoré J., Combescure A., “ Dynamic crack propagation under mixedmode
loading - Comparison between experiments and X-FEM simulations”, International
Journal of Solids and Structures, vol. 44, n° 20, p. 6517-6534, 2007.
Hild F., Réthoré J., Roux S., “ Measurement and identification techniques for evolving discontinuities”,
IUTAM Symposium on Discretization Methods for Evolving Discontinuities,
Kolsky H., “ An investigation of the mechanical properties of material at a very high rate of
loading”, Proceedings of the Physical Society, vol. B 62, p. 676-700, 1949.
Moës N., Dolbow J., Belytschko T., “ A finite element method for crack growth without remeshing”,
International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,
Owen D. M., Zhuang S., Rosakis A. J., Ravichandran G., “ Experimental determination of
dynamic crack initiation and propagation fracture toughness in thin aluminium sheets”,
International Journal of Fracture, vol. 90, p. 153-174, 1998.
Ravi-Chandar K., Dynamic Fracture, Elsevier, 2004.
Réthoré J.,Méthodes éléments finis étendus en espace et en temps: Application à la propagation
dynamique des fissures, PhD thesis, INSA-LYON, 2005.
Réthoré J., Gravouil A., Combescure A., “ An energy conserving scheme for dynamic crack
growth with the extended finite element method”, International Journal for Numerical
Methods in Engineering, vol. 63, p. 631-659, 2005.
Saad-Gouider N., Estevez R., Olagnon C., Seguela R., “ Calibration of a viscoplastic cohesive
zone for crazing in PMMA”, Engineering fracture mechanics, vol. 73, n° 16, p. 2503-2522,
Stalder B., Béguelin P., Kausch H. H., “ A simple velocity gauge for measuring crack growth”,
International Journal of Fracture, vol. 22, n° 2, p. R47-R50, 1983.
Sutton M., Cheng M., Peters W., Chao Y., McNeill S., “ Application of an optimized digital
correlation method to planar deformation analysis”, Image and Vision Computing, vol. 4,
n° 3, p. 143-150, 1986.
Sutton M., Wolters W., Peters W., Ranson W., McNeill S., “ Determination of displacements
using an improved digital correlation method”, Image and Vision Computing, vol. 1, n° 3,
p. 133-139, 1983.
Touchal-Mguil S., Une technique de corrélation d’images numériques: application à la détermination
de courbes limites de formages et proposition d’un critère de striction, PhD thesis,
INSA-LYON, 1997.
Zhao H., Gary G., “ A three dimensional analytical solution of the longitudinal wave propagation
in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques”,
Journal of Mechanics and Physics of Solids, vol. 43, n° 8, p. 1335-1348, 1995.