Influence of boundary conditions on strain field analysis for polycrystalline finite element simulations

Authors

  • Eva Héripré Solid Mechanics Laboratory, CNRS UMR 7649 Department of Mechanics, Ecole Polytechnique, F-91128 Palaiseau cedex
  • Jérôme Crépin Solid Mechanics Laboratory, CNRS UMR 7649 Department of Mechanics, Ecole Polytechnique, F-91128 Palaiseau cedex
  • Arjen Roos ONERA DMSM/CEMN 29 avenue de la Division Leclerc, BP 72, F-92322 Châtillon cedex
  • Jean-Louis Chaboche ONERA DMSM/CEMN 29 avenue de la Division Leclerc, BP 72, F-92322 Châtillon cedex

DOI:

https://doi.org/10.13052/EJCM.18.333-351

Keywords:

EBSD, DIC, identification, crystallographic constitutive law, polycrystal, SEM

Abstract

This paper presents a first validation of a novel methodology for identifying the parameters of a crystallographic elastoplastic constitutive law. This is accomplished by comparing simulation and experimental results at different length scales: the microstructure scale and the representative volume element scale. Experimentally, the microscopic strain fields and the microstrucural characteristics can be obtained only at the surface of the specimen. As a consequence, in finite element simulations only at the surface there is a oneto- one correspondence between the mesh and the experimental observed grain morphology. In this paper, the morphology of the subsurface grains is obtained by a simple extension in the thickness direction of the surface morphology. The aim of this study is then to verify whether the surface data contain sufficient information for the identification of the parameters of the constitutive law.

Downloads

Download data is not yet available.

References

Cailletaud G., “ Une approche micromécanique du comportement des polycristaux”, Rev. Phys.

App., vol. 23, p. 353-363, 1988.

Cailletaud G., Forest S., Jeulin D., Feyel F., Galliet I.,Mounoury V., Quilici S., “ Some elements

of microstructural mechanics”, Comp. Mat. Sc., vol. 27, n° 3, p. 351-374, 2003.

Claire D., Hild F., Roux F., “ A finite element formulation to identify damage fields: the equilibrium

gap method”, Int. J. Numer. Meth. Engng., vol. 61, p. 189-208, 2004.

Cornille N., Accurate 3D Shape and Displacement Measurement using a Scanning Electron

Microscope, Phd thesis, University of South Carolina, INSA Toulouse, 2005.

Grédiac M., Toussaint E., Pierron F., “ Special virtual fields for the direct determination of

material parameters with the virtual fields method. 2-Application to in-plane properties”,

Int. J. Sol. and Struct., vol. 39, p. 2707-2730, 2002.

Gürdal Z., Haftka R., Elements of Structural Optimization, Kluwer Academic Publishers, 1992.

Héripré E., Dexet M., Crépin J., Gélébart L., Roos A., Bornert M., Caldemaison D., “ Coupling

between Experimental Measurements and Polycrystal Finite Element Calculations for micromechanical

study of metallic materials”, Int. J. Plast., vol. 23, p. 1512-1539, 2007.

Hoc T., Crépin J., Gélébart L., Zaoui A., “ A procedure for identifying the plastic behavior of

single crystals from the local response of polycrystals”, Acta Mater., vol. 51, p. 5477-5488,

Kolednik ., Unterweger K., “ The ductility of metal matrix composites – Relation to local deformation

behavior and damage evolution”, Engng. Fract. Mech., vol. 75, p. 3663-3676,

Meuwissen M., Oomens C., Baaijens F., Petterson R., Janssen J., “ Determination of elastoplastic

properties of aluminium using a mixed numerical-experimental method”, J. Mater.

Proc. Tech., vol. 75, p. 204-211, 1998.

Saylor D., Fridy J., El-Dasher B., Jung K., Rollett A., “ Statistically Representative Three-

DimensionalMicrostructures Based on Orthogonal Observation Sections”,Met.Mat. Trans.

A, vol. 35A, p. 1969-1979, 2004.

Soppa E., Doumalin P., Binkele P., Wiesendanger T., Bornert M., Schmauder S., “ Experimental

and numerical characterisation of in-plane deformation in two-phase materials”, Comp.

Mater. Sc., vol. 21, p. 261-275, 2001.

St-Pierre L., Héripré E., Dexet M., Crépin J., Bertolino G., Bilger N., “ 3D simulations of

microstructure and comparison with experimental microstructure coming from O.I.M analysis”,

International Journal of Plasticity, vol. 24, p. 1516-1532, 2008.

Zeghadi A., Forest S., Gourgues A., Bouaziz O., “ Ensemble averaging stress-strain fields in

polycrystalline aggregates with a constrained surface microstructure - part 2 : crystal plasticity”,

Phil. Mag., vol. 87, n° 8-9, p. 1425-1446, 2007.

Downloads

Published

2009-08-12

How to Cite

Héripré, E. ., Crépin, J. ., Roos, A. ., & Chaboche, J.-L. (2009). Influence of boundary conditions on strain field analysis for polycrystalline finite element simulations. European Journal of Computational Mechanics, 18(3-4), 333–351. https://doi.org/10.13052/EJCM.18.333-351

Issue

Section

Original Article