Influence of boundary conditions on strain field analysis for polycrystalline finite element simulations
DOI:
https://doi.org/10.13052/EJCM.18.333-351Keywords:
EBSD, DIC, identification, crystallographic constitutive law, polycrystal, SEMAbstract
This paper presents a first validation of a novel methodology for identifying the parameters of a crystallographic elastoplastic constitutive law. This is accomplished by comparing simulation and experimental results at different length scales: the microstructure scale and the representative volume element scale. Experimentally, the microscopic strain fields and the microstrucural characteristics can be obtained only at the surface of the specimen. As a consequence, in finite element simulations only at the surface there is a oneto- one correspondence between the mesh and the experimental observed grain morphology. In this paper, the morphology of the subsurface grains is obtained by a simple extension in the thickness direction of the surface morphology. The aim of this study is then to verify whether the surface data contain sufficient information for the identification of the parameters of the constitutive law.
Downloads
References
Cailletaud G., “ Une approche micromécanique du comportement des polycristaux”, Rev. Phys.
App., vol. 23, p. 353-363, 1988.
Cailletaud G., Forest S., Jeulin D., Feyel F., Galliet I.,Mounoury V., Quilici S., “ Some elements
of microstructural mechanics”, Comp. Mat. Sc., vol. 27, n° 3, p. 351-374, 2003.
Claire D., Hild F., Roux F., “ A finite element formulation to identify damage fields: the equilibrium
gap method”, Int. J. Numer. Meth. Engng., vol. 61, p. 189-208, 2004.
Cornille N., Accurate 3D Shape and Displacement Measurement using a Scanning Electron
Microscope, Phd thesis, University of South Carolina, INSA Toulouse, 2005.
Grédiac M., Toussaint E., Pierron F., “ Special virtual fields for the direct determination of
material parameters with the virtual fields method. 2-Application to in-plane properties”,
Int. J. Sol. and Struct., vol. 39, p. 2707-2730, 2002.
Gürdal Z., Haftka R., Elements of Structural Optimization, Kluwer Academic Publishers, 1992.
Héripré E., Dexet M., Crépin J., Gélébart L., Roos A., Bornert M., Caldemaison D., “ Coupling
between Experimental Measurements and Polycrystal Finite Element Calculations for micromechanical
study of metallic materials”, Int. J. Plast., vol. 23, p. 1512-1539, 2007.
Hoc T., Crépin J., Gélébart L., Zaoui A., “ A procedure for identifying the plastic behavior of
single crystals from the local response of polycrystals”, Acta Mater., vol. 51, p. 5477-5488,
Kolednik ., Unterweger K., “ The ductility of metal matrix composites – Relation to local deformation
behavior and damage evolution”, Engng. Fract. Mech., vol. 75, p. 3663-3676,
Meuwissen M., Oomens C., Baaijens F., Petterson R., Janssen J., “ Determination of elastoplastic
properties of aluminium using a mixed numerical-experimental method”, J. Mater.
Proc. Tech., vol. 75, p. 204-211, 1998.
Saylor D., Fridy J., El-Dasher B., Jung K., Rollett A., “ Statistically Representative Three-
DimensionalMicrostructures Based on Orthogonal Observation Sections”,Met.Mat. Trans.
A, vol. 35A, p. 1969-1979, 2004.
Soppa E., Doumalin P., Binkele P., Wiesendanger T., Bornert M., Schmauder S., “ Experimental
and numerical characterisation of in-plane deformation in two-phase materials”, Comp.
Mater. Sc., vol. 21, p. 261-275, 2001.
St-Pierre L., Héripré E., Dexet M., Crépin J., Bertolino G., Bilger N., “ 3D simulations of
microstructure and comparison with experimental microstructure coming from O.I.M analysis”,
International Journal of Plasticity, vol. 24, p. 1516-1532, 2008.
Zeghadi A., Forest S., Gourgues A., Bouaziz O., “ Ensemble averaging stress-strain fields in
polycrystalline aggregates with a constrained surface microstructure - part 2 : crystal plasticity”,
Phil. Mag., vol. 87, n° 8-9, p. 1425-1446, 2007.