Predicting size effects in nickel-base single crystal superalloys with the Discrete-Continuous Model

Authors

  • Aurélien Vattré DMSM (ONERA) 29 Avenue de la Division Leclerc, F-92322 Châtillon cedex
  • Benoit Devincre LEM (CNRS-ONERA) 29 Avenue de la Division Leclerc, F-92322 Châtillon cedex
  • Arjen Roos DMSM (ONERA) 29 Avenue de la Division Leclerc, F-92322 Châtillon cedex
  • Frédéric Feyel DMSM (ONERA) 29 Avenue de la Division Leclerc, F-92322 Châtillon cedex

DOI:

https://doi.org/10.13052/EJCM.19.65-76

Keywords:

single-crystal superalloys, size effects, coupling dislocations dynamics-finite elements

Abstract

The Discrete-Continuous Model, a coupling between dislocation dynamics and finite elements simulations, is used for modelling size effects in the mechanical properties of single-crystal superalloys. Both formation and evolution of the dislocation microstructures are analysed, and the crucial role of the storage of signed dislocations at the interfaces is discussed. The onset of plasticity is found to scale as the inverse of the channel width, and polarised dislocation networks at the interfaces significantly increase the flow stress with respect to a bulk crystal.

Downloads

Download data is not yet available.

References

Acharya A., Bassani J. L., “ Incompatibility and crystal plasticity”, J. Mech. Phys. Sol., vol. 48,

p. 1565-1595, 2000.

Busso E. P., Meissonnier F. T., O’Dowd N. P., “ Gradient-dependent deformation of two-phase

single crystals”, J. Mech. Phys. Sol., vol. 48, p. 2333-2361, 2000.

Carry C., Strudel J. L., “ Apparent and effective creep parameters in single crystals of a nickel

base superalloy - I. Incubation period”, Acta Met., vol. 25, p. 767-777, 1977.

Cleveringa H. H.M., Van Der Giessen E., “ Discrete dislocation simulations and size dependent

hardening in single slip”, J. de Physique, vol. 8, p. 83-92, 1998.

Cleveringa H. H. M., Van Der Giessen E., Needleman A., “ Comparison of discrete dislocation

and continuum plasticity predictions for a composite material”, Acta Mat., vol. 45, p. 3163-

, 1997.

Devincre B., Roos A., Groh S., “ Boundary problems in DD simulations. In: Thermodynamics,

Microstructures and Plasticity, A. Finel et al., Nato Sciences Series II:Mathematics, Physics

and Chemistry”, , vol. 108, p. 275, 2003.

Duhl D. N., “ Directionally solidified superalloys.”, in C. Sims, N. Stoloff, W. C. Hagel (eds),

Superalloys II: High Temperature Materials for Aerospace and Industrial Power, J. Wiley

& Sons, New York, p. 189-214, 1987.

Fivel M., Canova G. R., “ Developing rigorous boundary conditions to discrete dislocation

dynamics”, Mod. Sim. Mat. Sc. Eng., vol. 7, p. 753-768, 1999.

Forest S., Barbe F., Cailletaud G., “ Cosserat modelling of size effects in the mechanical behavior

of plocrystal and multi-phase materials”, Int. J. Sol. Struct., vol. 37, p. 7105-7126,

Groh S., Devincre B., Kubin L., Roos A., Feyel F., Chaboche J.-L., “ Size effects in metal

matrix composites”, Materials Science and Engineering A, vol. 400–401, p. 279-282, 2005.

Gurtin M. E., “ On the plasticity of single crystals: free energy, microforces, plastic-strain

gradients”, J. Mech. Phys. Sol., vol. 48, p. 898-1036, 2000.

Kocks U. E., “ Laws for work-hardening and low-temperature creep”, Journal of Engineering

Materials and Technology, vol. 98, p. 16-85, 1976.

Lemarchand C., Devincre B., Kubin L. P., “ Homogenization method for a discrete-continuum

simulation of dislocation dynamics”, J. Mech. Phys. Sol., vol. 49, p. 1969-1982, 2001.

Madec R., Devincre B., Kubin L. P., “ On the use of periodic boundary conditions in dislocation

dynamics simulations”, in Y. Shibutani, H. Kitagawa (eds), IUTAM Symposium on

Mesoscopic Dynamics in Fracture Process and Strength of Materials, vol. 115, Kluwer,

Dordrecht, p. 35-44, 2003.

Mura T., Micromechanics of defects in solids, Kluwer Academic Publishers, 1987.

Nouailhas D., Lhuillier S., “ On the micro-macro modelling of °/°′ single crystal behavior”,

Comp. Mat. Sc., vol. 9, p. 177-187, 1997.

Nye J. F., “ Some geometrical relations in dislocated crystals”, Acta Met., vol. 1, p. 153-162,

Pollock T. M., Argon A. R., “ Creep resistance of CMSX-3 nickel base superalloy single crystals”,

Acta Met., vol. 40, p. 1-30, 1992.

Sevillano G., “ Low stress and work hardening. In: Cahn, R.W. Haasen, P. Kramer, E.Mughrabi

(Eds), Materials Science and Technology”, , vol. 6, p. 19-88, 1993.

Shu J. Y., Fleck N. A., Van Der Giessen E., Needleman A., “ Boundary layers in constrained

plastic flow: comparison of nonlocal and discrete dislocation plasticity”, J. Mech. Phys.

Sol., vol. 49, p. 1361-1395, 2001.

Van der Giessen E., Needleman A., “ Discrete Dislocation Plasticity - A Simple Planar Model”,

Mod. Sim. Mat. Sc. Eng., vol. 3, p. 689-735, 1995.

Vattré A., Devincre B., Roos A., “ Dislocation Dynamics simulations of precipitation hardening

in Ni-based superalloys with high °′ volume fraction”, Intermetallics, vol. 17, p. 988-994,

Vattré A., Devincre B., Roos A., “ Orientation dependence of plastic deformation in nickel-base

single crystal superalloys: a Discrete-Continuous Model simulation”, Acta Mat., 2010.

Veyssière P., Saada G., “ Microscopy and plasticity of the L12 °′ phase, in ’Dislocations in

Solids’”, , vol. 10, p. 253, 1997.

Westbrook J. H., Intermetallic Compounds, John Wiley, 1967.

Zbib H. M., De la Rubia T., “ A Multiscale Model of Plasticity”, Int. J. Plast., vol. 18, p. 1133-

, 2002.

Downloads

Published

2010-08-06

How to Cite

Vattré, A. ., Devincre, B. ., Roos, A. ., & Feyel, F. . (2010). Predicting size effects in nickel-base single crystal superalloys with the Discrete-Continuous Model. European Journal of Computational Mechanics, 19(1-3), 65–76. https://doi.org/10.13052/EJCM.19.65-76

Issue

Section

Original Article