Investigation of a side wall heated cavity by using lattice Boltzmann method

Authors

  • Ridha Djebali CNRS/ SPCTS, UMR 6638, FST Limoges, Dép. of Physics, 87060 Limoges, France and University of Tunis El-Manar, FSMPN Tunis, Dép. of Physics, LETTM, 1060 Tunis, Tunisia
  • Mohammed El Ganaoui CNRS/ SPCTS, UMR 6638, FST Limoges, Dép. of Physics, 87060 Limoges, France
  • Habib Sammouda University of Tunis El-Manar, FSMPN Tunis, Dép. of Physics, LETTM, 1060 Tunis, Tunisia

DOI:

https://doi.org/10.13052/EJCM.18.217-238

Keywords:

lattice Boltzmann method, natural convection, laminar flow, benchmark solution, secondary parameters effects

Abstract

The lattice Boltzmann method based on the BGK model has been used to simulate laminar natural convection in a heated rectangular cavity on the uniform grid. The hydrodynamic and thermal fields are solved by using the double populations approach. A general benchmark has been carried out to show the effects of secondary parameters at their wide range. Excellent agreement is obtained by comparison with available literature.

Downloads

Download data is not yet available.

References

Bouzidi M., D’Humières D., Lallemand P., Luo L.S., “Lattice Boltzmann equation on a twodimensional

rectangular grid”, J. Comput. Phys., 172, 2001, p. 704-717.

Bouzidi M., Firdaouss M. and Lallemand P., “Momentum transfer of a Boltzmann-lattice

fluid with boundaries”, Phys. Fluid, 13, 2001, p. 3452-3459.

Chen S. and Doolen G. D., “Lattice Boltzmann method for fluid flows”, Annu. Rev. Fluid

Mech., 30, 1998, p. 329-64.

de Gassowski G., Xin S. et Daube O., « Bifurcations et solutions multiples en cavité 3D différentiellement

chauffée », C. R. Mécanique, 331, 2003, p. 705-711.

de Vahl Davis G., “Natural convection of air in a square cavity: A benchmark numerical

solutions”, Int. J. Numer. Methods Fluids, 3, 1983, p. 249-264.

D’Humières D., Bouzidi M., Lallemand P., “Thirteen-velocity three-dimensional lattice

Boltzmann model”, Phys. Rev. E, 63, 2001, 066702.

Dubois M., Une introduction aux gaz de Boltzmann sur réseau, CNAM, Paris, 2006.

Filippova O. and Hanel D., “Acceleration of Lattice-BGK schemes with grid refinement”,

Journal of Computational Physics, 165, 2000, p. 407-427.

Guo Z. and Zhao T. S., “A Lattice Boltzmann model for convection heat transfer in porous

media”, Numerical Heat Transfer, Part B, 47, 2005, p. 157-177.

Guo Z. and Zhao T. S., “Explicit finite-difference lattice Boltzmann method for curvilinear

coordinates”, Physical Review, E 67, 066709, 2003.

Guo Z., Shi B. and Zheng C., “A coupled lattice BGK model for the Boussinesq equations”,

Int. J. Numer. Meth. Fluids, 39, 2002, p. 325-342.

He X. and Luo L. S., “Lattice Boltzmann model for the incompressible Navier-Stokes equation”,

Journal of Statistical Physics, vol. 88, n° 3/4, 1997.

He X., Zou Q., Luo L. S. and Dembo M., “Analytic Solutions of Simple Flows and Analysis

of Nonslip Boundary Conditions for the Lattice Boltzmann BGK Model”, Journal of Statistical

Physics, vol. 87, n° 1/2, 1997.

Hou S. and Zou Q., “Simulation of cavity flow by the Lattice Boltzmann method”, Journal of

Computational Physics, 118, 1995, p. 329-347.

Ismail K. A. R., Scalon V. L., “A finite element free convection model for the side wall

heated cavity”, Int. J. Heat Mass Transfer 43, 2000, p. 1373-1389.

Jami M., Mezrhab A., Bouzidi M., Lallemand P., “Lattice Boltzmann method applied to the

laminar natural convection in an enclosure with a heat-generating cylinder conducting

body”, International Journal of Thermal Sciences, 46, 2007, p. 38-47.

Kerr R. M. and Herring J. R., “Prandtl number dependence of Nusselt number in DNS”,

J. Fluids Mech, 1999.

Lallemand P., Luo L. S., “Lattice Boltzmann method for moving boundaries”, Journal of

Computational Physics, 184, 2003, p. 406-421.

Mezrhab A., Jami M., Bouzidi M. and Lallemand P., “Analysis of radiation-natural convection

in a divided enclosure using the lattice Boltzmann method”, Computers and fluids,

, n° 2, 2007, p. 423-434.

Mohamad A. A., Applied Lattice Boltzmann Method for Transport Phenomena, Momentum,

Heat and Mass Transfer, 2007.

Ozoe H., Sayama H., “Natural convection in an inclined rectangular channel at various aspect

ratios and angles-Experimental measurements”, Int. J. Heat Mass transfer, vol. 18, 1975,

p. 1425-1431.

Paolucci S. and Chennoweth D. R., “Transition to chaos in a differentially heated vertical

cavity”, J. Fluid Mech., vol. 201, 1989, p. 379-410.

Peng Y., Shu C., Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible

thermal flows”, Phys. Rev., E, 68, 026701, 2003, p. 1-8.

Qian Y. H., D’Humieres D. and Lallemand P., “Lattice BGK Models for Navier-Stokes Equation”,

Europhys. Lett., vol. 17, n° 6, 1992, p. 479-484.

Succi S., The lattice Boltzmann equation for fluid dynamics and beyond, Italy, 2001, p. 15

Semma E., El Ganaoui M., Bennacer R., Mohamad A. A., “Investigation of flows in

solidification by using the lattice Boltzmann method”, International Journal of Thermal

Sciences, 47, 2008, p. 201-208.

Shu C. and Xue h., “Comparison of two approaches for implementing stream function boundary

condition in DQ simulation of natural convection in square cavity”, Int. J. Heat and

Fluid Flow, 19, 1998, p. 59-68.

Shu C., Niu X.D., Peng Y. and Chew Y.T., “Taylor series expansion-and least square-based

Lattice Boltzmann method: an efficient approach for simulation of incompressible viscous

flows”, Progress in Computational Fluid Dynamics, vol. 5, 2005, Nos. 1/2.

Shu C., Peng Y., and Chew Y. T., “Simulation of natural convection in square cavity by

Taylor series expansion-and least square-based lattice Boltzmann method”, International

Journal of Modern Physics C, vol. 13, n° 10, 2002, p. 1399-1414.

Sukop M. C., Thorne Daniel T., Lattice Boltzmann modelling, an introduction for Geoscientists

and engineers, Florida USA, 2005

Vahala G., Pavlo P., Vahala L. and Martys N. S., “Thermal Lattice Boltzmann Model

(TLBM) for compressible flows”, International Journal for Modern Physics C, vol. 9,

, n° 8, p. 1247-1261.

Zou Q. and He X., “On pressure and velocity boundary conditions for the lattice Boltzmann

BGK model”, Phys. Fluids, vol. 9, n° 6, 1997.

Downloads

Published

2009-06-17

How to Cite

Djebali, R. ., Ganaoui, M. E. ., & Sammouda, H. . (2009). Investigation of a side wall heated cavity by using lattice Boltzmann method. European Journal of Computational Mechanics, 18(2), 217–238. https://doi.org/10.13052/EJCM.18.217-238

Issue

Section

Original Article