Etude par simulation numérique d’un réacteur de synthèse de nanopoudres
DOI:
https://doi.org/10.13052/REMN.16.775-794Keywords:
nanopowders, nanocomposites, laser induced formation of nanopowders, silicon, computational fluid dynamics (CFD), comupational heat transfer (CHT), reactive flow, turbulent jetAbstract
In the present work, a numerical model was developed for the simulation of the process of ceramic powder synthesis by the laser pyrolysis. It takes into account the flow, heat transfer and chemical reactions. The aim of this investigation is to develop a three dimensional model of the reactor and to characterize the influence of the various involved thermal parameters during the process. This will contribute to an improved fundamental understanding of the heat and mass transfer and fluid flow during the synthesis of ceramic nanopowdera. In addition, The reactor is studied under turbulent flow regime in order to provide first guidance of the design and the optimisation of the geometry of an industrial synthesis reactor.
Downloads
References
Amara M., El Ganaoui M., “Simulation of Heat and Mass Transfer inside a Nanopwders
Synthesis Reactor”, Progress in Computational Fluid Dynamics, vol. 6, n° 6. p. 371-278.
Amara M., Dez R., Foucaud-Raynaud.S., Bahloul-Hourlier D., Goursat P., Herlin-Boime N.,
Besson J.-L., “Fabrication and creep Behavior of SiCN(O) Nanocomposites”, Silicates
Industriels, Special Issue, 89, 2004, p. 281-285.
Amara M., El Ganaoui M., Hourlier D., “A preliminary study on the nanopowders synthesis: the
role of the flow inside the reactor”, Journal Mécanique & Industrie, 7, 2006, p. 131-137.
Bailly C., Comte-Bellot G., Turbulence, CNRS édition, 2003.
Cannon W. R., Danforth S., Haggert J. S., Marra R. A., “Sinterible Ceramic Powders From
Laser-Driven Reactions: II, Powder Characteristics and Process Variables”, Journal of the
American Ceramics Society, 65, 1982a, p. 330.
Cannon W. R., Danforth S. C., Flint J. H., Haggert J. S., Marra R. A., “Sinterible Ceramic
Powders From Laser-Driven Reactions: I, Process Description and modelling”, Journal of
the American Ceramics Society, 65, 1982b, p. 324.
colocated variables - 1. Computational procedure, Numerical Heat Transfer, 11, p. 363-390.
Documentation du code CFX 5, User Manuel.
Doucey B., Nanocomposites Si3N4/SiC : Stabilité thermique et densification de poudres
SiCN (Al, O) synthèse par pyrolyse laser ; Comportement au fluage, Thèse de Doctorat,
Université de Limoges, 1999.
Habli S., Mhiri H., El Golli S., Le Palec G., Bournot P., « Etude numérique des conditions
d’émission sur un écoulement de type jet axisymétrique turbulent », Int. J. Therm. Sci, 40,
, p. 497-511.
Haggerty J. S., Cannon W. R., Pleneum-Press, 1981, p. 165-241.
Kuster K. A., Pratsinis S. E., Strategies for control of ceramic powder synthesis by gastoparticle
conversion, Powder Technology, 85, 1995, p. 79-91.
Marra R. A., Homogenous nucleation and growth of silicon powder from laser heated gaz
phase reactants, PhD MIT, Cambridge, 1983.
Mhiri H., El Golli S., Le Palec G., Bournot P., « Influence des conditions d’émission sur un
écoulement de type jet plan laminar isotherme ou chauffé », Rev. Gén. Therm, 37, 1998,
p. 898-910.
Michel E., Coltrin Robert J., Miller James A., “A Mathematical Model of The Coupled Fluid
Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor”, J.
Electrochem Sos., 131, 1984, p. 425-34.
Musset E., Synthèse de poudres nanométriques à base de silicium, carbonate et azote par
couplage aerosol-laser et leurs caractérisation, Thèse de Doctorat Université Paris XI,
Newman C. G., O’Neal H. E., Ring M. A., Leska F. and N S., “Kinetics and mechanism of
the silane decomposition”, Int. J. Chem. Kinet, 11, 1979, p. 1167.
Nieh T. G., Wadswoth J., Wakai F., “Recent advances in Superplastic Ceramics and Ceramic
Composites”, International Materials Reviews, 33, 1991, p. 146-161.
Pan E. T-S., Flint J. H., Liang J. M., Adler. D. and Haggerty J. S., “Model for gaz-laser
interaction: application to thermally activated laser-induced chemical vapor deposition”,
Applied Optics, 26, 1987, p. 70-75.
Patankar Suhas V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing
Coprporation, 1980.
Pratsinis S. E., “Vapor Synthesis of Ceramic Powders”, Ceramic Transactions, 12, 1988,
p. 227-239.
Raw M., “Robustness of coupled algebraic multigrid for the Navier-Stokes equations”, AIAA,
, 96-0297.
Ring T. A., “Fundamentals of ceramic powder processing and synthesis”, Academic Press,
, p. 255-306.
Roef L., The numerical simulation of turbulent jets and diffusion flames, Eindhoven
University Press, The Netherlands, 2000.
Schneider G. E., Raw M. J., Control volume finite-element method for heat transfer and fluid
flow using collocated variables. II: Application and validation, Numerical heat transfer,
, 1987, p. 391-400.
Wakai F., “Superplasticity of Ceramics”, Ceramics International, 17, 1991, p. 153-163.
Weimer A. W., Carbide, Nitride and Boride, Materials synthesis and processing, CHPMAN
& HALL, 1997.
Wolfgang V., Esch. T. and Menter F., ANSYS CFX, 2002.